{"title":"Deformation Classification of Drawings for Assessment of Visual-Motor Perceptual Maturity","authors":"Momina Moetesum, I. Siddiqi, N. Vincent","doi":"10.1109/ICDAR.2019.00155","DOIUrl":null,"url":null,"abstract":"Sketches and drawings are popularly employed in clinical psychology to assess the visual-motor and perceptual development in children and adolescents. Drawn responses by subjects are mostly characterized by high degree of deformations that indicates presence of various visual, perceptual and motor disorders. Classification of deformations is a challenging task due to complex and extensive rule representation. In this study, we propose a novel technique to model clinical manifestations using Deep Convolutional Neural Networks (DCNNs). Drawn responses of nine templates used for assessment of perceptual orientation of individuals are employed as training samples. A number of defined deviations scored in each template are then modeled by applying fine tuning on a pre-trained DCNN architecture. Performance of the proposed technique is evaluated on samples of 106 children. Results of experiments show that pre-trained DCNNs can model and classify a number of deformations across multiple shapes with considerable success. Nevertheless some deformations are represented more reliably than the others. Overall promising classification results are observed that substantiate the effectiveness of our proposed technique.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"2005 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Sketches and drawings are popularly employed in clinical psychology to assess the visual-motor and perceptual development in children and adolescents. Drawn responses by subjects are mostly characterized by high degree of deformations that indicates presence of various visual, perceptual and motor disorders. Classification of deformations is a challenging task due to complex and extensive rule representation. In this study, we propose a novel technique to model clinical manifestations using Deep Convolutional Neural Networks (DCNNs). Drawn responses of nine templates used for assessment of perceptual orientation of individuals are employed as training samples. A number of defined deviations scored in each template are then modeled by applying fine tuning on a pre-trained DCNN architecture. Performance of the proposed technique is evaluated on samples of 106 children. Results of experiments show that pre-trained DCNNs can model and classify a number of deformations across multiple shapes with considerable success. Nevertheless some deformations are represented more reliably than the others. Overall promising classification results are observed that substantiate the effectiveness of our proposed technique.