Learning to rank by aggregating expert preferences

M. Volkovs, H. Larochelle, R. Zemel
{"title":"Learning to rank by aggregating expert preferences","authors":"M. Volkovs, H. Larochelle, R. Zemel","doi":"10.1145/2396761.2396868","DOIUrl":null,"url":null,"abstract":"We present a general treatment of the problem of aggregating preferences from several experts into a consensus ranking, in the context where information about a target ranking is available. Specifically, we describe how such problems can be converted into a standard learning-to-rank one on which existing learning solutions can be invoked. This transformation allows us to optimize the aggregating function for any target IR metric, such as Normalized Discounted Cumulative Gain, or Expected Reciprocal Rank. When applied to crowdsourcing and meta-search benchmarks, our new algorithm improves on state-of-the-art preference aggregation methods.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2396868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

We present a general treatment of the problem of aggregating preferences from several experts into a consensus ranking, in the context where information about a target ranking is available. Specifically, we describe how such problems can be converted into a standard learning-to-rank one on which existing learning solutions can be invoked. This transformation allows us to optimize the aggregating function for any target IR metric, such as Normalized Discounted Cumulative Gain, or Expected Reciprocal Rank. When applied to crowdsourcing and meta-search benchmarks, our new algorithm improves on state-of-the-art preference aggregation methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习通过汇总专家偏好来排序
在目标排名信息可用的情况下,我们提出了将几个专家的偏好聚合成共识排名的一般处理方法。具体来说,我们描述了如何将这些问题转换为一个标准的学习排序问题,在这个问题上可以调用现有的学习解决方案。这种转换允许我们优化任何目标IR度量的聚合函数,例如归一化贴现累积增益或期望倒数秩。当应用于众包和元搜索基准时,我们的新算法改进了最先进的偏好聚合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting web search success with fine-grained interaction data User activity profiling with multi-layer analysis Search result presentation based on faceted clustering Domain dependent query reformulation for web search CrowdTiles: presenting crowd-based information for event-driven information needs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1