{"title":"VLSI Design of Floating-Point Twiddle Factor Using Adaptive CORDIC on Various Iteration Limitations","authors":"Trong-Thuc Hoang, Duc-Hung Le, C. Pham","doi":"10.1109/MCSoC2018.2018.00044","DOIUrl":null,"url":null,"abstract":"The design of 32-bit floating-point Fast Fourier Transform (FFT) Twiddle Factor (TF) is proposed in this paper. The architecture was developed based on the adaptive algorithm of COordinate Rotation DIgital Computer (CORDIC). The CORDIC method is a well-known approach for approximating the complex-number multiplication in FFT implementations, also known as TF. An iterative process does the calculations of adaptive CORDIC. Therefore, by limiting the number of iterations, the accuracy performances can be sacrificed for the better outcome of throughput rates. As a result, there are three different FFT TF implementations were presented in this paper. They are TF-4, TF-8, and TF-16 for the design of TF implemented on four, eight, and 16 iteration limitations, respectively. The results of the three implementations were reported on both Field Programmable Gate Array (FPGA) and Application Specific Integrated Chip (ASIC) level. The FPGA results were examined on the Altera Stratix IV development kit, and the ASIC results were reported by the Synopsys tools with the Silicon On Thin Buried-oxide (SOTB) 65nm process library.","PeriodicalId":413836,"journal":{"name":"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC2018.2018.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The design of 32-bit floating-point Fast Fourier Transform (FFT) Twiddle Factor (TF) is proposed in this paper. The architecture was developed based on the adaptive algorithm of COordinate Rotation DIgital Computer (CORDIC). The CORDIC method is a well-known approach for approximating the complex-number multiplication in FFT implementations, also known as TF. An iterative process does the calculations of adaptive CORDIC. Therefore, by limiting the number of iterations, the accuracy performances can be sacrificed for the better outcome of throughput rates. As a result, there are three different FFT TF implementations were presented in this paper. They are TF-4, TF-8, and TF-16 for the design of TF implemented on four, eight, and 16 iteration limitations, respectively. The results of the three implementations were reported on both Field Programmable Gate Array (FPGA) and Application Specific Integrated Chip (ASIC) level. The FPGA results were examined on the Altera Stratix IV development kit, and the ASIC results were reported by the Synopsys tools with the Silicon On Thin Buried-oxide (SOTB) 65nm process library.