CROP PRODUCTION UNDER DIFFERENT CLIMATIC CONDITIONS BY ANALYZING AGRICULTURAL DATA USING MULTIPLE LINEAR REGRESSION, WINTER HOLT, AND ARTIFICIAL INTELLIGENCE

S. Qulmatova, Botirjon Karimov, Munis Abdullayev, Shirin Karimova
{"title":"CROP PRODUCTION UNDER DIFFERENT CLIMATIC CONDITIONS BY ANALYZING AGRICULTURAL DATA USING MULTIPLE LINEAR REGRESSION, WINTER HOLT, AND ARTIFICIAL INTELLIGENCE","authors":"S. Qulmatova, Botirjon Karimov, Munis Abdullayev, Shirin Karimova","doi":"10.1145/3584202.3584238","DOIUrl":null,"url":null,"abstract":"The article deals with the prediction of productivity dynamics of agricultural products based on exponential smoothing and optimization using Holt-Winters, multiple linear regression and ANN. Scaling the data is one of the preprocessing steps of the optimization algorithms in the dataset. As we know, most methods of ANN make decisions depending on their underlying data sets. Often, the algorithms calculate the distance between data points to draw better conclusions from the data. The effectiveness of the optimization methods is measured by the average percentage error (MAPE). According to the data calculation results, the Holt-Winter method MAPE value in prediction is 26.129 (), 297 (), 60.384 (), 93.6 (), 52.9 (), and the smallest MAPE value in multiple linear regression method is 0.28, MAPE value for ANN method is 128 Evolved. Considering the level of MAPE, the MAPE value in the ANN method decreased from 685.6 to 93.6 in comparison with other methods. In addition, indicators for multidimensional prediction of agricultural product productivity were developed in Uzbekistan.","PeriodicalId":438341,"journal":{"name":"Proceedings of the 6th International Conference on Future Networks & Distributed Systems","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Future Networks & Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3584202.3584238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article deals with the prediction of productivity dynamics of agricultural products based on exponential smoothing and optimization using Holt-Winters, multiple linear regression and ANN. Scaling the data is one of the preprocessing steps of the optimization algorithms in the dataset. As we know, most methods of ANN make decisions depending on their underlying data sets. Often, the algorithms calculate the distance between data points to draw better conclusions from the data. The effectiveness of the optimization methods is measured by the average percentage error (MAPE). According to the data calculation results, the Holt-Winter method MAPE value in prediction is 26.129 (), 297 (), 60.384 (), 93.6 (), 52.9 (), and the smallest MAPE value in multiple linear regression method is 0.28, MAPE value for ANN method is 128 Evolved. Considering the level of MAPE, the MAPE value in the ANN method decreased from 685.6 to 93.6 in comparison with other methods. In addition, indicators for multidimensional prediction of agricultural product productivity were developed in Uzbekistan.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多元线性回归、冬季霍尔特和人工智能对农业数据进行分析,研究不同气候条件下的作物产量
本文研究了基于指数平滑和优化的农产品生产率动态预测,并结合Holt-Winters、多元线性回归和人工神经网络进行了优化。数据缩放是数据集优化算法的预处理步骤之一。正如我们所知,大多数人工神经网络方法都是根据它们的底层数据集进行决策的。通常,算法会计算数据点之间的距离,以便从数据中得出更好的结论。通过平均误差百分比(MAPE)来衡量优化方法的有效性。根据数据计算结果,Holt-Winter方法预测的MAPE值分别为26.129()、297()、60.384()、93.6()、52.9(),多元线性回归方法的最小MAPE值为0.28,ANN方法的MAPE值为128 Evolved。考虑到MAPE的水平,与其他方法相比,ANN方法的MAPE值从685.6下降到93.6。此外,乌兹别克斯坦还制定了农产品生产率多维预测指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EXPERIENCE IN USING BIG DATA TECHNOLOGY FOR DIGITALIZATION OF INFORMATION ENSURING THE SMOOTH OPERATION OF PHYSICAL TECHNOLOGY COMPANIES IN DISTRIBUTED ENVIRONMENTS IMPROVING OPTICAL PROPERTIES OF POLYVINYL ALCOHOL (PVA) AND CARBOXYMETHYL CELLULOSE (CMC) AS POLYMER BLEND FILMS (CMC-PVA) A Layered Taxonomy of Internet of Things Attacks Blockchain-based solutions for Cloud Computing Security: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1