{"title":"Estimation of Bending Stresses in Piping Systems Subjected to Transient Pressure","authors":"Maral Taghva, L. Damkilde","doi":"10.1115/pvp2020-21556","DOIUrl":null,"url":null,"abstract":"\n Modifications in aged process plants may subject piping systems to fluid transient scenarios, which are not considered in the primary design calculations. Due to lack of strict requirements in ASME B31.3 the effect of this phenomenon is often excluded from piping structural integrity reassessments.\n Therefore, the consequences, such as severe pipe motion or even rupture failure, are discovered after modifications are completed and the system starts to function under new operational conditions. The motivation for this study emanated from several observations in offshore oil and gas piping systems, yet the results could be utilized in structural integrity assessments of any piping system subjected to pressure waves.\n This paper describes how to provide an approximate solution to determine maximum bending stresses in piping structures subjected to wave impulse loads without using rigorous approaches to calculate the dynamic response. This paper proposes to consider the effect of load duration in quasi-static analysis to achieve more credible results. The proposed method recommends application of lower dynamic load factors than commonly practiced values advised by design codes, for short duration loads such as shock waves. By presenting a real-life example, the results of improved and commonly practiced quasi-static analysis are compared with the site observations as well as dynamic analysis results. It is illustrated that modified quasi-static solution shows agreement with both dynamic analysis and physical behavior of the system.\n The contents of this study are particularly useful in structural strength re-assessments where the practicing engineer is interested in an approximated solution indicating if the design criteria is satisfied.","PeriodicalId":150804,"journal":{"name":"Volume 3: Design and Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2020-21556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Modifications in aged process plants may subject piping systems to fluid transient scenarios, which are not considered in the primary design calculations. Due to lack of strict requirements in ASME B31.3 the effect of this phenomenon is often excluded from piping structural integrity reassessments.
Therefore, the consequences, such as severe pipe motion or even rupture failure, are discovered after modifications are completed and the system starts to function under new operational conditions. The motivation for this study emanated from several observations in offshore oil and gas piping systems, yet the results could be utilized in structural integrity assessments of any piping system subjected to pressure waves.
This paper describes how to provide an approximate solution to determine maximum bending stresses in piping structures subjected to wave impulse loads without using rigorous approaches to calculate the dynamic response. This paper proposes to consider the effect of load duration in quasi-static analysis to achieve more credible results. The proposed method recommends application of lower dynamic load factors than commonly practiced values advised by design codes, for short duration loads such as shock waves. By presenting a real-life example, the results of improved and commonly practiced quasi-static analysis are compared with the site observations as well as dynamic analysis results. It is illustrated that modified quasi-static solution shows agreement with both dynamic analysis and physical behavior of the system.
The contents of this study are particularly useful in structural strength re-assessments where the practicing engineer is interested in an approximated solution indicating if the design criteria is satisfied.