Wavelet-Based Microbiome Correlations of Host Traits

Adeethyia Shankar, Stephanie Chang, Yongzhong Zhao, Xiaodi Wang, Tong Liu
{"title":"Wavelet-Based Microbiome Correlations of Host Traits","authors":"Adeethyia Shankar, Stephanie Chang, Yongzhong Zhao, Xiaodi Wang, Tong Liu","doi":"10.1145/3589437.3589440","DOIUrl":null,"url":null,"abstract":"The gut microbiome is composed of a plethora of microorganisms, and these microbes contribute to overall human health. It has been shown that dysbiosis of the microbiome is associated with certain diseases, including colorectal cancer and diabetes, yet the role of the microbiome is still little-known. Here, we aim to develop a novel wavelet-based framework to dissect the microbiome correlations of host traits. Due to the clinical nature of the biological dataset, we utilize the discrete wavelet transform (DWT)—enabling us to impute sparse matrices and decompose the data into different frequency components. We further carry out regressions of host traits with the microbiome relative abundances followed by computing correlations between the regression-predicted trait values. Moreover, we visualize these microbiome correlations of host traits with heat maps and build microbiome correlations of host traits network. As a result, our results revealed that microbiome correlations of host traits are prevalent. Our wavelet-based microbiome correlations of host traits analytic framework aims to lay the foundation for further causality analysis of the complex interplays between the microbiome and host traits.","PeriodicalId":119590,"journal":{"name":"Proceedings of the 2022 6th International Conference on Computational Biology and Bioinformatics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Computational Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3589437.3589440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The gut microbiome is composed of a plethora of microorganisms, and these microbes contribute to overall human health. It has been shown that dysbiosis of the microbiome is associated with certain diseases, including colorectal cancer and diabetes, yet the role of the microbiome is still little-known. Here, we aim to develop a novel wavelet-based framework to dissect the microbiome correlations of host traits. Due to the clinical nature of the biological dataset, we utilize the discrete wavelet transform (DWT)—enabling us to impute sparse matrices and decompose the data into different frequency components. We further carry out regressions of host traits with the microbiome relative abundances followed by computing correlations between the regression-predicted trait values. Moreover, we visualize these microbiome correlations of host traits with heat maps and build microbiome correlations of host traits network. As a result, our results revealed that microbiome correlations of host traits are prevalent. Our wavelet-based microbiome correlations of host traits analytic framework aims to lay the foundation for further causality analysis of the complex interplays between the microbiome and host traits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波的宿主性状微生物组相关性研究
肠道微生物群由大量微生物组成,这些微生物对人体整体健康有贡献。已有研究表明,微生物群的生态失调与某些疾病有关,包括结直肠癌和糖尿病,但微生物群的作用仍然知之甚少。在这里,我们的目标是开发一个新的基于小波的框架来剖析宿主性状的微生物组相关性。由于生物数据集的临床性质,我们利用离散小波变换(DWT) -使我们能够输入稀疏矩阵并将数据分解为不同的频率分量。我们进一步对宿主性状与微生物组相对丰度进行回归,然后计算回归预测性状值之间的相关性。此外,我们利用热图可视化这些宿主性状的微生物组相关性,并构建宿主性状的微生物组相关性网络。因此,我们的研究结果表明,宿主性状的微生物组相关性是普遍存在的。我们基于小波的宿主性状微生物组相关性分析框架旨在为进一步分析微生物组与宿主性状之间复杂的相互作用关系奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of Splice Junctions Across Species Using BLSTM Model Application of Convolutional Neural Network in Raman Spectral Recognition of Covid-19 Cross-Disease Bioinformatics Analysis to Elucidate Roles of Astrocytic Pathways Regulating Neuroinflammation in Autism Spectrum Disorder Interpreting Arrhythmia Classification Using Deep Neural Network and CAM-Based Approach Utilizing Data Clustering for Hypotheses Discovery in Multimodal Exercise and Health Interventions with Limited Sample Size
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1