Some new results in nonlinear predictive image coding using neural networks

H. Li
{"title":"Some new results in nonlinear predictive image coding using neural networks","authors":"H. Li","doi":"10.1109/NNSP.1992.253671","DOIUrl":null,"url":null,"abstract":"The problem of nonlinear predictive image coding with multilayer perceptrons is considered. Some important aspects of coding, including the training of multilayer perceptrons, the adaptive scheme, and the robustness to the channel noise, are discussed in detail. Computer simulation results show that nonlinear predictors have better predictive performances than the linear DPCM. It is shown that the nonlinear predictor will produce smaller variance of predictive error than the linear predictor; that in the absence of the channel noise the nonlinear predictor can provide about a 3-dB improvement in signal-to-noise ratio over the linear one at the same transmission bit rate; and that, after being specially trained, the nonlinear predictor has a stronger robustness to the channel noise than the linear one.<<ETX>>","PeriodicalId":438250,"journal":{"name":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1992.253671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The problem of nonlinear predictive image coding with multilayer perceptrons is considered. Some important aspects of coding, including the training of multilayer perceptrons, the adaptive scheme, and the robustness to the channel noise, are discussed in detail. Computer simulation results show that nonlinear predictors have better predictive performances than the linear DPCM. It is shown that the nonlinear predictor will produce smaller variance of predictive error than the linear predictor; that in the absence of the channel noise the nonlinear predictor can provide about a 3-dB improvement in signal-to-noise ratio over the linear one at the same transmission bit rate; and that, after being specially trained, the nonlinear predictor has a stronger robustness to the channel noise than the linear one.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络在非线性预测图像编码中的一些新成果
研究了基于多层感知器的非线性预测图像编码问题。详细讨论了编码的一些重要方面,包括多层感知器的训练、自适应方案和对信道噪声的鲁棒性。计算机仿真结果表明,非线性预测器比线性DPCM具有更好的预测性能。结果表明,非线性预测器比线性预测器产生更小的预测误差方差;在没有信道噪声的情况下,在相同的传输比特率下,非线性预测器可以比线性预测器提供约3db的信噪比改进;经过特殊训练后,非线性预测器对信道噪声的鲁棒性优于线性预测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discrete neural networks and fingerprint identification A fast simulator for neural networks on DSPs or FPGAs Hierarchical perceptron (HiPer) networks for signal/image classifications Adaptive decision-feedback equalizer using forward-only counterpropagation networks for Rayleigh fading channels An efficient model for systems with complex responses (neural network architecture for nonlinear filtering)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1