An overview of technical analysis in systematic trading strategies returns and a novel systematic strategy yielding positive significant returns

Marco Basanisi, Roberto Torresetti
{"title":"An overview of technical analysis in systematic trading strategies returns and a novel systematic strategy yielding positive significant returns","authors":"Marco Basanisi, Roberto Torresetti","doi":"10.55214/jcrbef.v5i1.204","DOIUrl":null,"url":null,"abstract":"This paper contributes to the literature on systematic trading strategies, in particular technical analysis profitability. We measure the profitability and forecasting power of a trend following strategy implemented in Python on a wide perimeter (205 European stocks, 11 industries, 7 major stock exchanges) over 8 years: from 2015 to 2022. The strategy signal is based on 4 moving averages and a trailing stop loss. We also introduce a mechanism based on trailing upper and lower price bounds to avoid false signals and limit transaction costs during lateral movements. We calibrate the iper-parameters to all stocks belonging to the same industry. The returns of the strategy applied to the constituents of the top performing industries provides a total return of 20% net of transaction costs, with an annualized Sharpe ratio of 0.54, in the out of sample time window from 2020 to 2022.","PeriodicalId":369772,"journal":{"name":"Journal of Contemporary Research in Business, Economics and Finance","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Contemporary Research in Business, Economics and Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55214/jcrbef.v5i1.204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper contributes to the literature on systematic trading strategies, in particular technical analysis profitability. We measure the profitability and forecasting power of a trend following strategy implemented in Python on a wide perimeter (205 European stocks, 11 industries, 7 major stock exchanges) over 8 years: from 2015 to 2022. The strategy signal is based on 4 moving averages and a trailing stop loss. We also introduce a mechanism based on trailing upper and lower price bounds to avoid false signals and limit transaction costs during lateral movements. We calibrate the iper-parameters to all stocks belonging to the same industry. The returns of the strategy applied to the constituents of the top performing industries provides a total return of 20% net of transaction costs, with an annualized Sharpe ratio of 0.54, in the out of sample time window from 2020 to 2022.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
系统交易策略收益的技术分析综述,以及一种产生显著正收益的新型系统策略
本文对系统交易策略,特别是技术分析盈利能力的研究做出了贡献。我们衡量了在Python中实施的趋势跟踪策略的盈利能力和预测能力,时间跨度为8年(从2015年到2022年),涉及范围广泛(205只欧洲股票,11个行业,7个主要证券交易所)。策略信号是基于4个移动平均线和跟踪止损。我们还引入了一种基于跟踪价格上限和下限的机制,以避免错误信号并限制横向运动中的交易成本。我们将iper参数校准为属于同一行业的所有股票。在2020年至2022年的样本外时间窗口内,将该策略应用于表现最佳行业的成分股,其净交易成本的总回报率为20%,年化夏普比率为0.54。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of a free trade agreement on unemployment and productivity growth in Nigeria Leadership styles and employee engagement in the food industry of MSME's A conceptual approach to the strategies and steps of digital marketing An overview of technical analysis in systematic trading strategies returns and a novel systematic strategy yielding positive significant returns Reviving economic recession and the role of insurance companies in Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1