Machine Learning Based Patient Classification In Emergency Department

Mehanas Shahul, P. P
{"title":"Machine Learning Based Patient Classification In Emergency Department","authors":"Mehanas Shahul, P. P","doi":"10.1109/AICAPS57044.2023.10074003","DOIUrl":null,"url":null,"abstract":"This work contains the classification of patients in an Emergency Department in a hospital according to their critical conditions. Machine learning can be applied based on the patient’s condition to quickly determine if the patient requires urgent medical intervention from the clinicians or not. Basic vital signs like Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Respiratory Rate (RR), Oxygen saturation (SPO2), Random Blood Sugar (RBS), Temperature, Pulse Rate (PR) are used as the input for the patients’ risk level identification. High-risk or non-risk categories are considered as the output for patient classification. Basic machine learning techniques such as LR, Gaussian NB, SVM, KNN and DT are used for the classification. Precision, recall, and F1-score are considered for the evaluation. The decision tree gives best F1-score of 77.67 for the risk level classification of the imbalanced dataset.","PeriodicalId":146698,"journal":{"name":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","volume":"87 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAPS57044.2023.10074003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work contains the classification of patients in an Emergency Department in a hospital according to their critical conditions. Machine learning can be applied based on the patient’s condition to quickly determine if the patient requires urgent medical intervention from the clinicians or not. Basic vital signs like Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Respiratory Rate (RR), Oxygen saturation (SPO2), Random Blood Sugar (RBS), Temperature, Pulse Rate (PR) are used as the input for the patients’ risk level identification. High-risk or non-risk categories are considered as the output for patient classification. Basic machine learning techniques such as LR, Gaussian NB, SVM, KNN and DT are used for the classification. Precision, recall, and F1-score are considered for the evaluation. The decision tree gives best F1-score of 77.67 for the risk level classification of the imbalanced dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的急诊科患者分类
这项工作包括根据病人的危急情况对医院急诊科的病人进行分类。可以根据患者的病情应用机器学习,快速确定患者是否需要临床医生的紧急医疗干预。以收缩压(SBP)、舒张压(DBP)、呼吸频率(RR)、血氧饱和度(SPO2)、随机血糖(RBS)、体温、脉搏率(PR)等基本生命体征作为识别患者风险水平的输入。高风险或非风险类别被视为患者分类的输出。基本的机器学习技术,如LR,高斯NB, SVM, KNN和DT用于分类。评估考虑了精度、召回率和f1分。决策树对不平衡数据集的风险等级分类给出了最佳f1分77.67分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart Irrigation Management System for Precision Agriculture Impact of Stain Normalisation Technique on Deep Learning based Nuclei Segmentation in Histopathological Image An Optimal Differential Evolution Based XGB Classifier for IoMT malware classification Sarcasm Detection followed by Sentiment Analysis for Bengali Language: Neural Network & Supervised Approach Feature Selection using Enhanced Nature Optimization Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1