MetaMax: Improved Open-Set Deep Neural Networks via Weibull Calibration

Zongyao Lyu, Nolan B. Gutierrez, William J. Beksi
{"title":"MetaMax: Improved Open-Set Deep Neural Networks via Weibull Calibration","authors":"Zongyao Lyu, Nolan B. Gutierrez, William J. Beksi","doi":"10.1109/WACVW58289.2023.00048","DOIUrl":null,"url":null,"abstract":"Open-set recognition refers to the problem in which classes that were not seen during training appear at inference time. This requires the ability to identify instances of novel classes while maintaining discriminative capability for closed-set classification. OpenMax was the first deep neural network-based approach to address open-set recognition by calibrating the predictive scores of a standard closed-set classification network. In this paper we present MetaMax, a more effective post-processing technique that improves upon contemporary methods by directly modeling class activation vectors. MetaMax removes the need for computing class mean activation vectors (MAVs) and distances between a query image and a class MAV as required in OpenMax. Experimental results show that MetaMax outperforms OpenMax and is comparable in performance to other state-of-the-art approaches.","PeriodicalId":306545,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)","volume":"13 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW58289.2023.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Open-set recognition refers to the problem in which classes that were not seen during training appear at inference time. This requires the ability to identify instances of novel classes while maintaining discriminative capability for closed-set classification. OpenMax was the first deep neural network-based approach to address open-set recognition by calibrating the predictive scores of a standard closed-set classification network. In this paper we present MetaMax, a more effective post-processing technique that improves upon contemporary methods by directly modeling class activation vectors. MetaMax removes the need for computing class mean activation vectors (MAVs) and distances between a query image and a class MAV as required in OpenMax. Experimental results show that MetaMax outperforms OpenMax and is comparable in performance to other state-of-the-art approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MetaMax:基于威布尔校准的改进开集深度神经网络
开集识别是指在训练中没有看到的类在推理时出现的问题。这需要能够识别新类的实例,同时保持闭集分类的判别能力。OpenMax是第一个基于深度神经网络的方法,通过校准标准闭集分类网络的预测分数来解决开放集识别问题。在本文中,我们提出了MetaMax,这是一种更有效的后处理技术,通过直接建模类激活向量来改进当代方法。MetaMax不需要计算类平均激活向量(MAV)和查询图像与类MAV之间的距离,这在OpenMax中是必需的。实验结果表明,MetaMax优于OpenMax,在性能上可与其他最先进的方法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subjective and Objective Video Quality Assessment of High Dynamic Range Sports Content Improving the Detection of Small Oriented Objects in Aerial Images Image Quality Assessment using Semi-Supervised Representation Learning A Principal Component Analysis-Based Approach for Single Morphing Attack Detection Can Machines Learn to Map Creative Videos to Marketing Campaigns?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1