{"title":"One for All and All for One: Simultaneous Approximation of Multiple Functions over Distributed Streams","authors":"A. Lazerson, Moshe Gabel, D. Keren, A. Schuster","doi":"10.1145/3093742.3093918","DOIUrl":null,"url":null,"abstract":"Distributed monitoring methods address the difficult problem of continuously approximating functions over distributed streams, while minimizing the communication cost. However, existing methods are concerned with the approximation of a single function at a time. Employing these methods to track multiple functions will multiply the communication volume, thus eliminating their advantage in the first place. We introduce a novel approach that can be applied to multiple functions. Our method applies a communication reduction scheme to the set of functions, rather than to each function independently, keeping a low communication volume. Evaluation on several real-world datasets shows that our method can track many functions with reduced communication, in most cases incurring only a negligible increase in communication over distributed approximation of a single function.","PeriodicalId":325666,"journal":{"name":"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3093742.3093918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Distributed monitoring methods address the difficult problem of continuously approximating functions over distributed streams, while minimizing the communication cost. However, existing methods are concerned with the approximation of a single function at a time. Employing these methods to track multiple functions will multiply the communication volume, thus eliminating their advantage in the first place. We introduce a novel approach that can be applied to multiple functions. Our method applies a communication reduction scheme to the set of functions, rather than to each function independently, keeping a low communication volume. Evaluation on several real-world datasets shows that our method can track many functions with reduced communication, in most cases incurring only a negligible increase in communication over distributed approximation of a single function.