LBRW: A Learning based Random Walk for Recommender Systems

F. Mourchid, M. Elkoutbi
{"title":"LBRW: A Learning based Random Walk for Recommender Systems","authors":"F. Mourchid, M. Elkoutbi","doi":"10.4018/IJISSC.2015070102","DOIUrl":null,"url":null,"abstract":"Location-based social networks LBSNs have witnessed a great expansion as an attractive form of social media. LBSNs allow users to \"check-in\" at geographical locations and share this information with friends. Indeed, with the spatial, temporal and social aspects of user patterns provided by LBSNs data, researchers have a promising opportunity for understanding human mobility dynamics, with the purpose of designing new generation mobile applications, including context-aware advertising and city-wide sensing applications. In this paper, the authors introduce a learning based random walk model LBRW combining user interests and \"mobility homophily\" for location recommendation in LBSNs. These properties are observed from a real-world Location-Based Social Networks LBSNs dataset. The authors present experimental evidence that validates LBRW and demonstrates the power of these inferred properties in improving location recommendation performance.","PeriodicalId":371573,"journal":{"name":"Int. J. Inf. Syst. Soc. Chang.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Syst. Soc. Chang.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJISSC.2015070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Location-based social networks LBSNs have witnessed a great expansion as an attractive form of social media. LBSNs allow users to "check-in" at geographical locations and share this information with friends. Indeed, with the spatial, temporal and social aspects of user patterns provided by LBSNs data, researchers have a promising opportunity for understanding human mobility dynamics, with the purpose of designing new generation mobile applications, including context-aware advertising and city-wide sensing applications. In this paper, the authors introduce a learning based random walk model LBRW combining user interests and "mobility homophily" for location recommendation in LBSNs. These properties are observed from a real-world Location-Based Social Networks LBSNs dataset. The authors present experimental evidence that validates LBRW and demonstrates the power of these inferred properties in improving location recommendation performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LBRW:基于学习的随机漫步推荐系统
基于位置的社交网络LBSNs作为一种有吸引力的社交媒体形式已经得到了极大的发展。LBSNs允许用户在地理位置“签到”,并与朋友分享这些信息。事实上,利用LBSNs数据提供的用户模式的空间、时间和社会方面,研究人员有希望了解人类移动动态,设计新一代移动应用,包括上下文感知广告和城市范围内的传感应用。本文提出了一种结合用户兴趣和“移动性同质性”的基于学习的随机行走模型LBRW,用于LBSNs的位置推荐。这些属性是从现实世界基于位置的社交网络LBSNs数据集观察到的。作者提出了验证LBRW的实验证据,并展示了这些推断属性在提高位置推荐性能方面的力量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Depression, Self-Esteem, and Lifestyle Factors Among University Students in Singapore and Malaysia When Big Data Meets NFT: Challenges, Impacts, and Opportunities Do We Really Need Elderly-Friendly Integrated Care Portals?: Mind Blocks to Their Adoption and Implementation Protest Movements, Social Media, and the Role of Law Enforcement Assessing the Impact of Human Error Assessment on Organization Performance in the Software Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1