Static graph challenge on GPU

M. Bisson, M. Fatica
{"title":"Static graph challenge on GPU","authors":"M. Bisson, M. Fatica","doi":"10.1109/HPEC.2017.8091034","DOIUrl":null,"url":null,"abstract":"This paper presents the details of a CUDA implementation of the Subgraph Isomorphism Graph Challenge, a new effort aimed at driving progress in the graph analytics field. challenge consists of two graph analytics: triangle counting and k-truss. We present our CUDA implementation of the graph triangle counting operation and of the k-truss subgraph decomposition. Both implementations share the same codebase taking advantage of a set intersection operation implemented via bitmaps. The analytics are implemented in four kernels optimized for different types of graphs. At runtime, lightweight heuristics are used to select the kernel to run based on the specific graph taken as input.","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

This paper presents the details of a CUDA implementation of the Subgraph Isomorphism Graph Challenge, a new effort aimed at driving progress in the graph analytics field. challenge consists of two graph analytics: triangle counting and k-truss. We present our CUDA implementation of the graph triangle counting operation and of the k-truss subgraph decomposition. Both implementations share the same codebase taking advantage of a set intersection operation implemented via bitmaps. The analytics are implemented in four kernels optimized for different types of graphs. At runtime, lightweight heuristics are used to select the kernel to run based on the specific graph taken as input.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU上的静态图形挑战
本文介绍了子图同构图挑战的CUDA实现的细节,这是一项旨在推动图分析领域进步的新努力。挑战包括两个图分析:三角形计数和k-桁架。我们给出了图形三角形计数操作和k-truss子图分解的CUDA实现。两个实现共享相同的代码库,利用通过位图实现的集合交集操作。分析是在针对不同类型的图进行优化的四个内核中实现的。在运行时,使用轻量级启发式方法根据作为输入的特定图选择要运行的内核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimized task graph mapping on a many-core neuromorphic supercomputer Software-defined extreme scale networks for bigdata applications Power-aware computing: Measurement, control, and performance analysis for Intel Xeon Phi xDCI, a data science cyberinfrastructure for interdisciplinary research Leakage energy reduction for hard real-time caches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1