Performance Evaluation of Full-Duplex Energy Harvesting Relaying Networks Using PDC Self-Interference Cancellation

Jiaman Li, Le Chung Tran, F. Safaei
{"title":"Performance Evaluation of Full-Duplex Energy Harvesting Relaying Networks Using PDC Self-Interference Cancellation","authors":"Jiaman Li, Le Chung Tran, F. Safaei","doi":"10.1109/ICSPCS.2018.8631724","DOIUrl":null,"url":null,"abstract":"In this paper, throughput and bit error performance of an in-band full duplex (IBFD) relaying system assisted by the radio frequency energy harvesting technique and the polarization-enabled digital self-interference cancellation (PDC) scheme are investigated. In particular, the relay node harvests power from the wireless radio frequency signal transmitted from the source node and uses this power to amplify and forward signals to the destination. Meanwhile, the PDC scheme is used at the relay node to cancel the self-interference signal in order to facilitate the concurrent in-band transmission and reception. The impact of both energy harvesting and self-interference cancellation on the throughput and the error performance of the system is evaluated. Our simulation results show that the full-duplex energy harvesting relaying system almost doubles the system throughput, compared to the half-duplex energy harvesting relaying system, at the cost of about 5 dB inferior error performance, partially because of the noise effect of the PDC scheme. We also show that to achieve a high throughput along with a good error performance in the full-duplex energy harvesting relaying system, a combined selection of a high signal-to-noise ratio and a suitable energy harvesting time is required.","PeriodicalId":179948,"journal":{"name":"2018 12th International Conference on Signal Processing and Communication Systems (ICSPCS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 12th International Conference on Signal Processing and Communication Systems (ICSPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCS.2018.8631724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, throughput and bit error performance of an in-band full duplex (IBFD) relaying system assisted by the radio frequency energy harvesting technique and the polarization-enabled digital self-interference cancellation (PDC) scheme are investigated. In particular, the relay node harvests power from the wireless radio frequency signal transmitted from the source node and uses this power to amplify and forward signals to the destination. Meanwhile, the PDC scheme is used at the relay node to cancel the self-interference signal in order to facilitate the concurrent in-band transmission and reception. The impact of both energy harvesting and self-interference cancellation on the throughput and the error performance of the system is evaluated. Our simulation results show that the full-duplex energy harvesting relaying system almost doubles the system throughput, compared to the half-duplex energy harvesting relaying system, at the cost of about 5 dB inferior error performance, partially because of the noise effect of the PDC scheme. We also show that to achieve a high throughput along with a good error performance in the full-duplex energy harvesting relaying system, a combined selection of a high signal-to-noise ratio and a suitable energy harvesting time is required.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PDC自干扰抵消的全双工能量收集中继网络性能评价
本文研究了射频能量收集技术和极化数字自干扰抵消(PDC)技术辅助下的带内全双工(IBFD)中继系统的吞吐量和误码性能。特别是,中继节点从源节点传输的无线射频信号中获取能量,并使用该能量将信号放大并转发到目的地。同时,在中继节点采用PDC方案消除自干扰信号,方便带内并发收发。评估了能量收集和自干扰消除对系统吞吐量和误差性能的影响。仿真结果表明,与半双工能量收集中继系统相比,全双工能量收集中继系统的吞吐量几乎提高了一倍,但误差性能降低了约5 dB,部分原因是PDC方案的噪声影响。我们还表明,为了在全双工能量收集中继系统中实现高吞吐量和良好的误差性能,需要高信噪比和合适的能量收集时间的组合选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design, Implementation & Performance Analysis of Low Cost High Performance Computing (HPC) Clusters Range Extension Using Opal in Open Environments The Smallest Critical Sets of Latin Squares Forward-Looking Clutter Suppression Approach of Airborne Radar Based on KA-JDL Algorithm of Object Filtering Analysis of Variance of Opinion Scores for MPEG-4 Scalable and Advanced Video Coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1