{"title":"ASD-EVNet: An Ensemble Vision Network based on Facial Expression for Autism Spectrum Disorder Recognition","authors":"Assil Jaby, Md Baharul Islam, Md Atiqur Rahman Ahad","doi":"10.23919/MVA57639.2023.10215688","DOIUrl":null,"url":null,"abstract":"Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that affects individuals’ social interaction, communication, and behavior. Early diagnosis and intervention are critical for the well-being and development of children with ASD. Available methods for diagnosing ASD are unpredictable (or with limited accuracy) or require significant time and resources. We aim to enhance the precision of ASD diagnosis by utilizing facial expressions, a readily accessible and limited time-consuming approach. This paper presents ASD Ensemble Vision Network (ASD-EVNet) for recognizing ASD based on facial expressions. The model utilizes three Vision Transformer (ViT) architectures, pre-trained on imageNet-21K and fine-tuned on the ASD dataset. We also develop an extensive collection of facial expression-based ASD dataset for children (FADC). The ensemble learning model was then created by combining the predictions of the three ViT models and feeding it to a classifier. Our experiments demonstrate that the proposed ensemble learning model outperforms and achieves state-of-the-art results in detecting ASD based on facial expressions.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that affects individuals’ social interaction, communication, and behavior. Early diagnosis and intervention are critical for the well-being and development of children with ASD. Available methods for diagnosing ASD are unpredictable (or with limited accuracy) or require significant time and resources. We aim to enhance the precision of ASD diagnosis by utilizing facial expressions, a readily accessible and limited time-consuming approach. This paper presents ASD Ensemble Vision Network (ASD-EVNet) for recognizing ASD based on facial expressions. The model utilizes three Vision Transformer (ViT) architectures, pre-trained on imageNet-21K and fine-tuned on the ASD dataset. We also develop an extensive collection of facial expression-based ASD dataset for children (FADC). The ensemble learning model was then created by combining the predictions of the three ViT models and feeding it to a classifier. Our experiments demonstrate that the proposed ensemble learning model outperforms and achieves state-of-the-art results in detecting ASD based on facial expressions.