Identity Document Recognition: Neural Network Approach

V.S. Mustafina, S. Ivanov
{"title":"Identity Document Recognition: Neural Network Approach","authors":"V.S. Mustafina, S. Ivanov","doi":"10.1109/RusAutoCon52004.2021.9537340","DOIUrl":null,"url":null,"abstract":"The passport of the Russian Federation is the main document of Russian citizens. A Russian passport is required for the vast majority of transactions in banks, government agencies, education, etc. This paper presents a neural network approach to data recognition from the Russian Federation passport. The use of two neural networks is proposed. The first neural network based on SOTA neural network YOLOv5 to determine the location of areas with text. The second convolutional neural network with the topology chosen by the authors to recognize the text in the previously selected blocks. A console application was implemented to demonstrate the approach. The accuracy of the first network is 78.6%, the second is 97.4%.","PeriodicalId":106150,"journal":{"name":"2021 International Russian Automation Conference (RusAutoCon)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Russian Automation Conference (RusAutoCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RusAutoCon52004.2021.9537340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The passport of the Russian Federation is the main document of Russian citizens. A Russian passport is required for the vast majority of transactions in banks, government agencies, education, etc. This paper presents a neural network approach to data recognition from the Russian Federation passport. The use of two neural networks is proposed. The first neural network based on SOTA neural network YOLOv5 to determine the location of areas with text. The second convolutional neural network with the topology chosen by the authors to recognize the text in the previously selected blocks. A console application was implemented to demonstrate the approach. The accuracy of the first network is 78.6%, the second is 97.4%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
身份证件识别:神经网络方法
俄罗斯联邦护照是俄罗斯公民的主要证件。在银行、政府机构、教育等领域的绝大多数交易都需要俄罗斯护照。本文提出了一种基于神经网络的俄罗斯联邦护照数据识别方法。提出了两种神经网络的应用。第一个基于SOTA神经网络的YOLOv5确定带有文本区域的位置。第二个卷积神经网络使用作者选择的拓扑来识别先前选择的块中的文本。实现了一个控制台应用程序来演示该方法。第一种网络的准确率为78.6%,第二种为97.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Algorithm for Arc Furnace Mode Control with Dynamic Arc Length Correction at Metal Refining Period Part Position Correction During Assembly According to Force and Torque Sensor Signals Formation of a Digital Footprint Based on the Characteristics of Computer Hardware to Identity APCS Users Static Devices to Prevent Unnecessary Disconnections of Gas-Piston Units in Transients Model-Based Architecture for Control System Design with Application of SIMO Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1