Binary Gabor pattern feature extraction technique for hardwood species classification

Arvind R. Yadav, J. Kumar, R. S. Anand, M. Dewal, Sangeeta Gupta
{"title":"Binary Gabor pattern feature extraction technique for hardwood species classification","authors":"Arvind R. Yadav, J. Kumar, R. S. Anand, M. Dewal, Sangeeta Gupta","doi":"10.1109/RAIT.2018.8389066","DOIUrl":null,"url":null,"abstract":"This paper presents a binary Gabor pattern (BGP) feature extraction technique to acquire significant texture features of microscopic images of hardwood species and later these feature are used to discriminate the hardwood species into 75 different categories. The usefulness of the BGP feature extraction technique has been examined with the help of three classifiers, namely, linear support vector machine (LSVM), radial basis function support vector machine (RBFSVM) and random forest (RF) classification algorithms. Further, the performance of the BGP feature extraction technique for hardwood species classification has been evaluated against several texture feature techniques. The comparison of the results obtained by the feature extraction techniques recommends that BGP feature extraction technique has been better for microscopic images of hardwood species classification than the other feature extraction techniques.","PeriodicalId":219972,"journal":{"name":"2018 4th International Conference on Recent Advances in Information Technology (RAIT)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Recent Advances in Information Technology (RAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAIT.2018.8389066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a binary Gabor pattern (BGP) feature extraction technique to acquire significant texture features of microscopic images of hardwood species and later these feature are used to discriminate the hardwood species into 75 different categories. The usefulness of the BGP feature extraction technique has been examined with the help of three classifiers, namely, linear support vector machine (LSVM), radial basis function support vector machine (RBFSVM) and random forest (RF) classification algorithms. Further, the performance of the BGP feature extraction technique for hardwood species classification has been evaluated against several texture feature techniques. The comparison of the results obtained by the feature extraction techniques recommends that BGP feature extraction technique has been better for microscopic images of hardwood species classification than the other feature extraction techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硬木树种分类的二元Gabor模式特征提取技术
本文提出了一种基于二元Gabor模式(BGP)的特征提取技术,以获取阔叶树显微图像中重要的纹理特征,并利用这些特征将阔叶树分为75个不同的类别。利用线性支持向量机(LSVM)、径向基函数支持向量机(RBFSVM)和随机森林(RF)分类算法对BGP特征提取技术的有效性进行了检验。此外,对比几种纹理特征技术,对BGP特征提取技术在硬木树种分类中的性能进行了评价。通过对各特征提取技术所得结果的比较,表明BGP特征提取技术比其他特征提取技术更适合于硬木显微图像的树种分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of slope stability and detection of critical failure surface using gravitational search algorithm Prioritization of human errors in EOT crane operations and its visualisation using virtual simulation Impact of land use dynamics on land surface temperature in Jharia coalfield Application of fractional calculus to distinguish left ventricular hypertrophy with normal ECG Miniaturization of Vivaldi antenna for different wireless communication applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1