From Zero to Hero: Generating Training Data for Question-To-Cypher Models

Dominik Opitz, N. Hochgeschwender
{"title":"From Zero to Hero: Generating Training Data for Question-To-Cypher Models","authors":"Dominik Opitz, N. Hochgeschwender","doi":"10.1145/3528588.3528655","DOIUrl":null,"url":null,"abstract":"Graph databases employ graph structures such as nodes, attributes and edges to model and store relationships among data. To access this data, graph query languages (GQL) such as Cypher are typically used, which might be difficult to master for end-users. In the context of relational databases, sequence to SQL models, which translate natural language questions to SQL queries, have been proposed. While these Neural Machine Translation (NMT) models increase the accessibility of relational databases, NMT models for graph databases are not yet available mainly due to the lack of suitable parallel training data. In this short paper we sketch an architecture which enables the generation of synthetic training data for the graph query language Cypher.","PeriodicalId":313397,"journal":{"name":"2022 IEEE/ACM 1st International Workshop on Natural Language-Based Software Engineering (NLBSE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 1st International Workshop on Natural Language-Based Software Engineering (NLBSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3528588.3528655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Graph databases employ graph structures such as nodes, attributes and edges to model and store relationships among data. To access this data, graph query languages (GQL) such as Cypher are typically used, which might be difficult to master for end-users. In the context of relational databases, sequence to SQL models, which translate natural language questions to SQL queries, have been proposed. While these Neural Machine Translation (NMT) models increase the accessibility of relational databases, NMT models for graph databases are not yet available mainly due to the lack of suitable parallel training data. In this short paper we sketch an architecture which enables the generation of synthetic training data for the graph query language Cypher.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从零到英雄:生成问题到密码模型的训练数据
图数据库使用节点、属性和边等图结构来建模和存储数据之间的关系。要访问这些数据,通常使用图形查询语言(GQL),如Cypher,这对于最终用户来说可能很难掌握。在关系数据库环境中,序列到SQL模型被提出,它将自然语言问题转换为SQL查询。虽然这些神经机器翻译(NMT)模型增加了关系数据库的可访问性,但由于缺乏合适的并行训练数据,图数据库的NMT模型尚未可用。在这篇简短的文章中,我们概述了一个能够生成图查询语言Cypher的综合训练数据的体系结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GitHub Issue Classification Using BERT-Style Models Story Point Level Classification by Text Level Graph Neural Network Issue Report Classification Using Pre-trained Language Models Identification of Intra-Domain Ambiguity using Transformer-based Machine Learning Predicting Issue Types with seBERT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1