Breast Cancer Diagnosis Using Optimized Machine Learning Algorithms

S. Bensaoucha
{"title":"Breast Cancer Diagnosis Using Optimized Machine Learning Algorithms","authors":"S. Bensaoucha","doi":"10.1109/ICRAMI52622.2021.9585977","DOIUrl":null,"url":null,"abstract":"This paper presents an investigation study of seven Machine Learning Algorithms (MLAs) for Breast Cancer (BC) diagnosis. These algorithms are: Decision Tree (DT), Discriminated Analysis (DA), Naive Bayes (NB), Support Vector Machine (SVM), K Nearest Neighbor (KNN), Ensemble Methods (EMs) and Multi-Layer Perceptron (MLP) classifier. All of these algorithms are applied to the Wisconsin Diagnostic Breast Cancer (Diagnostic) (WDBC) dataset.The main objective of the study is to optimize the hyperparameters of each MLA in order to achieve the best BC classification. This process can also help to reduce the effort and time required for classification. For this reason, Bayesian optimization method is used in MATLAB software to select the hyperparameters values of the six first algorithms. In Python language, Grid search method is used to optimize the MLP hyperparameters. To demonstrate the effect of the optimization process, several predefined models with a corresponding optimized model are evaluated for each algorithm to diagnose the category of BC, whether benign or malignant. The maximum accuracy reported in this study is 96.52%, offered by SVM and MLP algorithms.","PeriodicalId":440750,"journal":{"name":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMI52622.2021.9585977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an investigation study of seven Machine Learning Algorithms (MLAs) for Breast Cancer (BC) diagnosis. These algorithms are: Decision Tree (DT), Discriminated Analysis (DA), Naive Bayes (NB), Support Vector Machine (SVM), K Nearest Neighbor (KNN), Ensemble Methods (EMs) and Multi-Layer Perceptron (MLP) classifier. All of these algorithms are applied to the Wisconsin Diagnostic Breast Cancer (Diagnostic) (WDBC) dataset.The main objective of the study is to optimize the hyperparameters of each MLA in order to achieve the best BC classification. This process can also help to reduce the effort and time required for classification. For this reason, Bayesian optimization method is used in MATLAB software to select the hyperparameters values of the six first algorithms. In Python language, Grid search method is used to optimize the MLP hyperparameters. To demonstrate the effect of the optimization process, several predefined models with a corresponding optimized model are evaluated for each algorithm to diagnose the category of BC, whether benign or malignant. The maximum accuracy reported in this study is 96.52%, offered by SVM and MLP algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用优化的机器学习算法诊断乳腺癌
本文介绍了7种用于乳腺癌诊断的机器学习算法(MLAs)的调查研究。这些算法是:决策树(DT),判别分析(DA),朴素贝叶斯(NB),支持向量机(SVM), K最近邻(KNN),集成方法(EMs)和多层感知器(MLP)分类器。所有这些算法都应用于威斯康星诊断乳腺癌(WDBC)数据集。本研究的主要目的是优化每个MLA的超参数,以达到最佳的BC分类。此过程还可以帮助减少分类所需的工作量和时间。为此,在MATLAB软件中使用贝叶斯优化方法选择前六种算法的超参数值。在Python语言中,使用网格搜索方法对MLP超参数进行优化。为了证明优化过程的效果,对每个算法的几个预定义模型和相应的优化模型进行评估,以诊断BC的类别,无论是良性还是恶性。本文报道的SVM和MLP算法的最大准确率为96.52%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation Of The Structure FSS Using The WCIP Method For Dual Polarization Applications Impact of Mixup Hyperparameter Tunning on Deep Learning-based Systems for Acoustic Scene Classification Analysis of Solutions for a Reaction-Diffusion Epidemic Model Segmentation of Positron Emission Tomography Images Using Multi-atlas Anatomical Magnetic Resonance Imaging (MRI) Multi-Input CNN for molecular classification in breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1