Deep Reinforcement Learning based Compute-Intensive Workload Allocation in Data Centers with High Energy Efficiency

Zhenfeng Gao, Wei Liu, Long Suo, Jiandong Li, Yijun Lu
{"title":"Deep Reinforcement Learning based Compute-Intensive Workload Allocation in Data Centers with High Energy Efficiency","authors":"Zhenfeng Gao, Wei Liu, Long Suo, Jiandong Li, Yijun Lu","doi":"10.1109/iccc52777.2021.9580316","DOIUrl":null,"url":null,"abstract":"Recently the huge amount of energy consumption has become a barrier to the widespread deployment of data centers serving various Internet of Things applications. The reasonable allocation of compute-intensive workloads to physical servers is an efficient way to improve the data center's energy efficiency. Though existing works has proposed some algorithms to manage workloads or virtual machines for energy saving, most of them did not comprehensively consider the high dynamics of server states, and lacked in high scalability in their implementation. In this paper, the Actor Critic based Compute-Intensive Workload Allocation Scheme (AC-CIWAS) is proposed, which can both guarantee the Quality of Service (QoS) of workloads and reduce the computational energy consumption of physical servers. To achieve rational workload allocation, AC-CIWAS captures the dynamic feature of server states continuously, and takes the impact of different workloads on energy consumption into consideration. AC-CIWAS employs the Deep Reinforcement Learning (DRL) based Actor Critic (AC) algorithm to evaluate the expected cumulative return over time, while the cumulative return guides to allocate workloads with high energy efficiency. Simulation results have demonstrated that compared to existing baseline allocation methods, the proposed AC-CIWAS can achieve an approximately 20 percent decrease in server power consumption with QoS guarantee.","PeriodicalId":425118,"journal":{"name":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccc52777.2021.9580316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently the huge amount of energy consumption has become a barrier to the widespread deployment of data centers serving various Internet of Things applications. The reasonable allocation of compute-intensive workloads to physical servers is an efficient way to improve the data center's energy efficiency. Though existing works has proposed some algorithms to manage workloads or virtual machines for energy saving, most of them did not comprehensively consider the high dynamics of server states, and lacked in high scalability in their implementation. In this paper, the Actor Critic based Compute-Intensive Workload Allocation Scheme (AC-CIWAS) is proposed, which can both guarantee the Quality of Service (QoS) of workloads and reduce the computational energy consumption of physical servers. To achieve rational workload allocation, AC-CIWAS captures the dynamic feature of server states continuously, and takes the impact of different workloads on energy consumption into consideration. AC-CIWAS employs the Deep Reinforcement Learning (DRL) based Actor Critic (AC) algorithm to evaluate the expected cumulative return over time, while the cumulative return guides to allocate workloads with high energy efficiency. Simulation results have demonstrated that compared to existing baseline allocation methods, the proposed AC-CIWAS can achieve an approximately 20 percent decrease in server power consumption with QoS guarantee.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度强化学习的高能效数据中心计算密集型工作负载分配
最近,大量的能源消耗已经成为服务于各种物联网应用的数据中心广泛部署的障碍。将计算密集型工作负载合理分配到物理服务器上,是提高数据中心能源效率的有效途径。虽然已有的研究提出了一些管理工作负载或虚拟机的节能算法,但大多没有全面考虑服务器状态的高动态性,在实现上缺乏高可扩展性。本文提出了基于Actor Critic的计算密集型工作负载分配方案(AC-CIWAS),该方案既能保证工作负载的服务质量(QoS),又能降低物理服务器的计算能耗。为了实现合理的工作负载分配,AC-CIWAS持续捕捉服务器状态的动态特征,并考虑不同工作负载对能耗的影响。AC- ciwas采用基于深度强化学习(DRL)的Actor Critic (AC)算法来评估随时间推移的预期累积回报,而累积回报指导以高能效分配工作负载。仿真结果表明,与现有的基线分配方法相比,所提出的AC-CIWAS可以在保证QoS的情况下将服务器功耗降低约20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Group-oriented Handover Authentication Scheme in MEC-Enabled 5G Networks Joint Task Secure Offloading and Resource Allocation for Multi-MEC Server to Improve User QoE Dueling-DDQN Based Virtual Machine Placement Algorithm for Cloud Computing Systems Predictive Beam Tracking with Cooperative Sensing for Vehicle-to-Infrastructure Communications Age-aware Communication Strategy in Federated Learning with Energy Harvesting Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1