Image Denoising with Shrinkage and Redundant Representations

Michael Elad, Boaz Matalon, M. Zibulevsky
{"title":"Image Denoising with Shrinkage and Redundant Representations","authors":"Michael Elad, Boaz Matalon, M. Zibulevsky","doi":"10.1109/CVPR.2006.143","DOIUrl":null,"url":null,"abstract":"Shrinkage is a well known and appealing denoising technique. The use of shrinkage is known to be optimal for Gaussian white noise, provided that the sparsity on the signal’s representation is enforced using a unitary transform. Still, shrinkage is also practiced successfully with nonunitary, and even redundant representations. In this paper we shed some light on this behavior. We show that simple shrinkage could be interpreted as the first iteration of an algorithm that solves the basis pursuit denoising (BPDN) problem. Thus, this work leads to a novel iterative shrinkage algorithm that can be considered as an effective pursuit method. We demonstrate this algorithm, both on synthetic data, and for the image denoising problem, where we learn the image prior parameters directly from the given image. The results in both cases are superior to several popular alternatives.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

Abstract

Shrinkage is a well known and appealing denoising technique. The use of shrinkage is known to be optimal for Gaussian white noise, provided that the sparsity on the signal’s representation is enforced using a unitary transform. Still, shrinkage is also practiced successfully with nonunitary, and even redundant representations. In this paper we shed some light on this behavior. We show that simple shrinkage could be interpreted as the first iteration of an algorithm that solves the basis pursuit denoising (BPDN) problem. Thus, this work leads to a novel iterative shrinkage algorithm that can be considered as an effective pursuit method. We demonstrate this algorithm, both on synthetic data, and for the image denoising problem, where we learn the image prior parameters directly from the given image. The results in both cases are superior to several popular alternatives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于收缩和冗余表示的图像去噪
收缩是一种众所周知且吸引人的去噪技术。已知使用收缩是高斯白噪声的最佳选择,前提是使用酉变换强制执行信号表示的稀疏性。尽管如此,对于非单一的,甚至冗余的表示,收缩也可以成功地实践。在本文中,我们阐明了这种行为。我们表明,简单的收缩可以解释为解决基追踪去噪(BPDN)问题的算法的第一次迭代。因此,这项工作导致了一种新的迭代收缩算法,可以被认为是一种有效的追踪方法。我们在合成数据和图像去噪问题上演示了该算法,其中我们直接从给定图像中学习图像先验参数。这两种方法的结果都优于几种流行的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image Efficient Maximally Stable Extremal Region (MSER) Tracking Transformation invariant component analysis for binary images Region-Tree Based Stereo Using Dynamic Programming Optimization Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1