Fast algorithms to solve the Dantzig selector

Liang Li, Yongcheng Li, Qing Ling
{"title":"Fast algorithms to solve the Dantzig selector","authors":"Liang Li, Yongcheng Li, Qing Ling","doi":"10.1109/ICCA.2013.6565188","DOIUrl":null,"url":null,"abstract":"The Dantzig selector is a linear regression model which aims to sparsely represent a response vector by regressors. This paper introduces two fast algorithms which solve the Dantzig selector. One algorithm is linearized alternating direction method (LADMM) which utilizes the separable structure to solve the Dantzig selector; another is a variant of Dantzig selector with sequential optimization (DASSO) which utilizes the sparsity prior to solve the Dantzig selector. We numerically compare the two algorithms on standard data sets, and show that taking advantage of properties of the problem itself enables designing fast algorithms.","PeriodicalId":336534,"journal":{"name":"2013 10th IEEE International Conference on Control and Automation (ICCA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th IEEE International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2013.6565188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Dantzig selector is a linear regression model which aims to sparsely represent a response vector by regressors. This paper introduces two fast algorithms which solve the Dantzig selector. One algorithm is linearized alternating direction method (LADMM) which utilizes the separable structure to solve the Dantzig selector; another is a variant of Dantzig selector with sequential optimization (DASSO) which utilizes the sparsity prior to solve the Dantzig selector. We numerically compare the two algorithms on standard data sets, and show that taking advantage of properties of the problem itself enables designing fast algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速算法求解Dantzig选择器
Dantzig选择器是一种线性回归模型,旨在通过回归量稀疏地表示响应向量。本文介绍了求解Dantzig选择器的两种快速算法。一种算法是线性化交替方向法(LADMM),利用可分结构求解Dantzig选择器;另一种是Dantzig选择器的序列优化(DASSO)变体,它利用稀疏性先验来求解Dantzig选择器。我们在标准数据集上对这两种算法进行了数值比较,并表明利用问题本身的特性可以设计出快速的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cooperative task planning for multiple autonomous UAVs with graph representation and genetic algorithm Real-time measure and control system of biped walking robot based on sensor Simultaneously scheduling production plan and maintenance policy for a single machine with failure uncertainty Fuzzy grey sliding mode control for maximum power point tracking of photovoltaic systems A data-driven approach for sensor fault diagnosis in gearbox of wind energy conversion system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1