Breast Cancer Histopathology Image Classification with Deep Convolutional Neural Networks

Steve A. Adeshina, A. P. Adedigba, A. A. Adeniyi, A. Aibinu
{"title":"Breast Cancer Histopathology Image Classification with Deep Convolutional Neural Networks","authors":"Steve A. Adeshina, A. P. Adedigba, A. A. Adeniyi, A. Aibinu","doi":"10.1109/ICECCO.2018.8634690","DOIUrl":null,"url":null,"abstract":"This work addresses the problem of intra-class classification of Breast Histopathology images into Eight (8) classes of either Benign or Malignant Cell. Current manual features extraction and classification is fraught with inaccuracies leading to high rate false negatives with attendant mortality. Deep Convolutional Neural Networks (DCNN) have been shown to be effective in classification of Images. We adopted a DCNN architecture combined with Ensemble learning method using TensorFlow Framework with Backpropagation training and ReLU activation function to achieve accurate automated classification of these Images. We achieved inter-class classification accuracy of 91.5% with the BreakHis dataset.","PeriodicalId":399326,"journal":{"name":"2018 14th International Conference on Electronics Computer and Computation (ICECCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference on Electronics Computer and Computation (ICECCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCO.2018.8634690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

This work addresses the problem of intra-class classification of Breast Histopathology images into Eight (8) classes of either Benign or Malignant Cell. Current manual features extraction and classification is fraught with inaccuracies leading to high rate false negatives with attendant mortality. Deep Convolutional Neural Networks (DCNN) have been shown to be effective in classification of Images. We adopted a DCNN architecture combined with Ensemble learning method using TensorFlow Framework with Backpropagation training and ReLU activation function to achieve accurate automated classification of these Images. We achieved inter-class classification accuracy of 91.5% with the BreakHis dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度卷积神经网络的乳腺癌组织病理学图像分类
这项工作解决了乳腺组织病理学图像的类内分类问题,分为八(8)类良性或恶性细胞。目前的人工特征提取和分类充满了不准确性,导致高假阴性率和随之而来的死亡率。深度卷积神经网络(Deep Convolutional Neural Networks, DCNN)在图像分类中已被证明是有效的。我们采用DCNN架构结合集成学习方法,使用带反向传播训练和ReLU激活函数的TensorFlow框架实现对这些图像的准确自动分类。我们使用BreakHis数据集实现了91.5%的类间分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Analysis of Indexes Quality of a Healthcare in Kazakhstan Machine Learning Algorithms for Classification Geology Data from Well Logging Development of House Automation System Controlled Using IoT Technologies Software Development for the Correction of Various Aspects of Children's Oral and Written Speech (Based on Latin Alphabet) Influence of Heuristic Functions on Real-Time Heuristic Search Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1