DJAFER YAHIA M BENCHADI, Messaoud Benchadi, Bojan Batalo, K. Fukui
{"title":"Malware detection using Kernel Constrained Subspace Method","authors":"DJAFER YAHIA M BENCHADI, Messaoud Benchadi, Bojan Batalo, K. Fukui","doi":"10.23919/MVA57639.2023.10215631","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel approach based on subspace representation for malware detection, an important task of distinguishing between safe and malware (malicious) file classes. Our solution is to utilize a target software’s byte-level visualization (image pattern) and represent the two classes by low-dimensional subspaces respectively, in high-dimensional vector space. We use the kernel constrained subspace method (KCSM) as a classifier, which has shown excellent results in various pattern recognition tasks. However, its computational cost may be high due to the use of kernel trick, which makes it difficult to achieve real-time detection. To address this issue, we introduce Random Fourier Features (RFF), which we can handle directly like standard vectors, bypassing the kernel trick. This approach reduces execution time by around 99%, while retaining a high recognition rate. We conduct extensive experiments on several public malware datasets, and demonstrate superior results against several baselines and previous approaches.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a novel approach based on subspace representation for malware detection, an important task of distinguishing between safe and malware (malicious) file classes. Our solution is to utilize a target software’s byte-level visualization (image pattern) and represent the two classes by low-dimensional subspaces respectively, in high-dimensional vector space. We use the kernel constrained subspace method (KCSM) as a classifier, which has shown excellent results in various pattern recognition tasks. However, its computational cost may be high due to the use of kernel trick, which makes it difficult to achieve real-time detection. To address this issue, we introduce Random Fourier Features (RFF), which we can handle directly like standard vectors, bypassing the kernel trick. This approach reduces execution time by around 99%, while retaining a high recognition rate. We conduct extensive experiments on several public malware datasets, and demonstrate superior results against several baselines and previous approaches.