Quantum RoboSound: Auditory Feedback of a Quantum-Driven Robotic Swarm

Maria Mannone, V. Seidita, A. Chella
{"title":"Quantum RoboSound: Auditory Feedback of a Quantum-Driven Robotic Swarm","authors":"Maria Mannone, V. Seidita, A. Chella","doi":"10.1109/RO-MAN53752.2022.9900578","DOIUrl":null,"url":null,"abstract":"Data sonification enhance and enrich information understanding with an additional sensory dimension. Sonification also opens the way to more creative applications, joining arts and sciences. In this study, we present sequences of chords obtained as auditory feedback from the trajectories of a robotic swarm. The swarm behavior is an emerging effect from simple local interactions and autonomous decisions of each robot. The swarm effect can be identified through sonification outcomes in terms of voice leading patterns. Thus, chord patterns represent behavior patterns. The convergence to the target is represented by the convergence to a specific pitch. The swarm decision process is based upon quantum computing. We first present logic gates and their implementations as quantum circuits, describing examples with 2- and 3-dimensional motion of a 3-robot toy swarm. The considered scenarios are ant foraging (2D) and underwater search and rescue (3D). Then, we provide and discuss some examples of the harmonic sequences that can be obtained as feedback from robotic motion.","PeriodicalId":250997,"journal":{"name":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN53752.2022.9900578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Data sonification enhance and enrich information understanding with an additional sensory dimension. Sonification also opens the way to more creative applications, joining arts and sciences. In this study, we present sequences of chords obtained as auditory feedback from the trajectories of a robotic swarm. The swarm behavior is an emerging effect from simple local interactions and autonomous decisions of each robot. The swarm effect can be identified through sonification outcomes in terms of voice leading patterns. Thus, chord patterns represent behavior patterns. The convergence to the target is represented by the convergence to a specific pitch. The swarm decision process is based upon quantum computing. We first present logic gates and their implementations as quantum circuits, describing examples with 2- and 3-dimensional motion of a 3-robot toy swarm. The considered scenarios are ant foraging (2D) and underwater search and rescue (3D). Then, we provide and discuss some examples of the harmonic sequences that can be obtained as feedback from robotic motion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子机器人声:量子驱动机器人群的听觉反馈
数据超声通过额外的感官维度增强和丰富信息理解。声音化也为更多的创造性应用开辟了道路,将艺术和科学结合起来。在这项研究中,我们提出了从机器人群的轨迹中获得的听觉反馈的和弦序列。群体行为是由单个机器人之间简单的局部相互作用和自主决策形成的。群体效应可以通过声音引导模式的超声结果来识别。因此,和弦模式代表行为模式。对目标的收敛表现为对特定节距的收敛。群体决策过程是基于量子计算的。我们首先提出了逻辑门及其作为量子电路的实现,描述了3个机器人玩具群的二维和三维运动的例子。考虑的场景是蚂蚁觅食(2D)和水下搜救(3D)。然后,我们给出并讨论了从机器人运动中获得反馈的谐波序列的一些例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
I Can’t Believe That Happened! : Exploring Expressivity in Collaborative Storytelling with the Tabletop Robot Haru Nothing About Us Without Us: a participatory design for an Inclusive Signing Tiago Robot Preliminary Investigation of Collision Risk Assessment with Vision for Selecting Targets Paid Attention to by Mobile Robot Step-by-Step Task Plan Explanations Beyond Causal Links Contributions of user tests in a Living Lab in the co-design process of human robot interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1