Processing big data graphs on memory-restricted systems

Harshvardhan, N. Amato, Lawrence Rauchwerger
{"title":"Processing big data graphs on memory-restricted systems","authors":"Harshvardhan, N. Amato, Lawrence Rauchwerger","doi":"10.1145/2628071.2671429","DOIUrl":null,"url":null,"abstract":"With the advent of big-data, processing large graphs quickly has become increasingly important. Most existing approaches either utilize in-memory processing techniques, which can only process graphs that fit completely in RAM, or disk-based techniques that sacrifice performance. Contribution. In this work, we propose a novel RAM-Disk hybrid approach to graph processing that can scale well from a single shared-memory node to large distributed-memory systems. It works by partitioning the graph into subgraphs that fit in RAM and uses a paging-like technique to load subgraphs. We show that without modifying the algorithms, this approach can scale from small memory-constrained systems (such as tablets) to large-scale distributed machines with 16, 000+ cores.","PeriodicalId":263670,"journal":{"name":"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)","volume":"1 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2628071.2671429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With the advent of big-data, processing large graphs quickly has become increasingly important. Most existing approaches either utilize in-memory processing techniques, which can only process graphs that fit completely in RAM, or disk-based techniques that sacrifice performance. Contribution. In this work, we propose a novel RAM-Disk hybrid approach to graph processing that can scale well from a single shared-memory node to large distributed-memory systems. It works by partitioning the graph into subgraphs that fit in RAM and uses a paging-like technique to load subgraphs. We show that without modifying the algorithms, this approach can scale from small memory-constrained systems (such as tablets) to large-scale distributed machines with 16, 000+ cores.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在内存受限的系统上处理大数据图
随着大数据的出现,快速处理大型图形变得越来越重要。大多数现有方法要么利用内存处理技术(只能处理完全适合RAM的图形),要么利用基于磁盘的技术(会牺牲性能)。的贡献。在这项工作中,我们提出了一种新的ram -磁盘混合方法来处理图形,可以很好地从单个共享内存节点扩展到大型分布式内存系统。它将图划分为适合RAM的子图,并使用类似分页的技术来加载子图。我们证明,在不修改算法的情况下,这种方法可以从内存受限的小型系统(如平板电脑)扩展到拥有16,000多个核的大型分布式机器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimizing stencil code via locality of computation Adaptive heterogeneous scheduling for integrated GPUs Heterogeneous microarchitectures trump voltage scaling for low-power cores Bitwise data parallelism in regular expression matching KLA: A new algorithmic paradigm for parallel graph computations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1