Desgin and Implementation of ROS2-based Autonomous Tiny Robot Car with Integration of Multiple ROS2 FPGA Nodes

Hayato Mori, Hayato Amano, Akinobu Mizutani, Eisuke Okazaki, Yuki Konno, Kohei Sada, Tomohiro Ono, Yuma Yoshimoto, H. Tamukoh, Takeshi Ohkawa, Midori Sugaya
{"title":"Desgin and Implementation of ROS2-based Autonomous Tiny Robot Car with Integration of Multiple ROS2 FPGA Nodes","authors":"Hayato Mori, Hayato Amano, Akinobu Mizutani, Eisuke Okazaki, Yuki Konno, Kohei Sada, Tomohiro Ono, Yuma Yoshimoto, H. Tamukoh, Takeshi Ohkawa, Midori Sugaya","doi":"10.1109/ICFPT56656.2022.9974433","DOIUrl":null,"url":null,"abstract":"This paper introduces an autonomous tiny robot car equipped with a camera-based lane detection function and a traffic signal/obstacle, pedestrian recognition function. Each function is integrated by Robot Operating System 2 (ROS2), a middleware for robot system development. Autonomous driving without the need for a driver requires not only lane-following driving but also traffic signal recognition and obstacle recognition. These functions are implemented on FPGA, and we evaluated them. According to these results, the execution time of traffic signal recognition by FPGA was 1.2 to 3.4 times faster than CPU execution. YOLOv4 is used for obstacle recognition, which improved mAP by 3.79 points compared to YOLO v3-Tiny.","PeriodicalId":239314,"journal":{"name":"2022 International Conference on Field-Programmable Technology (ICFPT)","volume":"83 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT56656.2022.9974433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces an autonomous tiny robot car equipped with a camera-based lane detection function and a traffic signal/obstacle, pedestrian recognition function. Each function is integrated by Robot Operating System 2 (ROS2), a middleware for robot system development. Autonomous driving without the need for a driver requires not only lane-following driving but also traffic signal recognition and obstacle recognition. These functions are implemented on FPGA, and we evaluated them. According to these results, the execution time of traffic signal recognition by FPGA was 1.2 to 3.4 times faster than CPU execution. YOLOv4 is used for obstacle recognition, which improved mAP by 3.79 points compared to YOLO v3-Tiny.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成多个ROS2 FPGA节点的基于ROS2的自主微型机器人汽车设计与实现
本文介绍了一种具有基于摄像头的车道检测功能和交通信号/障碍物、行人识别功能的自主微型机器人汽车。机器人操作系统2 (Robot Operating System 2, ROS2)是机器人系统开发的中间件。不需要驾驶员的自动驾驶不仅需要车道跟随驾驶,还需要交通信号识别和障碍物识别。在FPGA上实现了这些功能,并对其进行了评估。根据这些结果,FPGA的交通信号识别执行时间比CPU的执行时间快1.2 ~ 3.4倍。使用YOLOv4进行障碍物识别,与YOLOv4 - tiny相比,mAP提高了3.79分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Efficient FPGA-Based Approximate Multipliers for Error-Tolerant Computing FPT 22 on Site Proceedings The Impact of Hardware Folding on Dependability in Spaceborne FPGA-based Neural Networks Cloning the Unclonable: Physically Cloning an FPGA Ring-Oscillator PUF A Markovian Approach for Detecting Failures in the Xilinx SEM core
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1