{"title":"Few-Shot Data Augmentation for Industrial Character Recognition","authors":"Hongchao Gao, Xiaoqian Huang, Bofeng Liu","doi":"10.1145/3581807.3581841","DOIUrl":null,"url":null,"abstract":"The task of industrial character recognition is to extract character content on the surface of the workpiece in the industrial production process. Limited training data, incomplete available character categories and non-standardized character styles encountered in actual production have led to a significant reduction in the recognition performance of deep learning-based methods, such as scene text recognition and Optical Character Recognition (OCR). In this paper, we propose an augmentation strategy suitable for industrial character recognition based on the Generative Adversarial Network (GAN). The strategy consists of two modules, a character detection module and a synthetic data generation module. The results show that the augmentation strategy achieves best generation results. Recognition network utilizing the augmentation dataset generated by the strategy can achieve the best results on four types of industrial datasets.","PeriodicalId":292813,"journal":{"name":"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581807.3581841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The task of industrial character recognition is to extract character content on the surface of the workpiece in the industrial production process. Limited training data, incomplete available character categories and non-standardized character styles encountered in actual production have led to a significant reduction in the recognition performance of deep learning-based methods, such as scene text recognition and Optical Character Recognition (OCR). In this paper, we propose an augmentation strategy suitable for industrial character recognition based on the Generative Adversarial Network (GAN). The strategy consists of two modules, a character detection module and a synthetic data generation module. The results show that the augmentation strategy achieves best generation results. Recognition network utilizing the augmentation dataset generated by the strategy can achieve the best results on four types of industrial datasets.