Pulse Active Mean (PAM): A PIN supporting feature extraction algorithm for doubly secure authentication

S. Safie, J. Soraghan, L. Petropoulakis
{"title":"Pulse Active Mean (PAM): A PIN supporting feature extraction algorithm for doubly secure authentication","authors":"S. Safie, J. Soraghan, L. Petropoulakis","doi":"10.1109/ISIAS.2011.6122821","DOIUrl":null,"url":null,"abstract":"This paper presents a new feature extraction technique called Pulse Active Mean (PAM) implemented on Electrocardiograms (ECG) for biometric authentication. A doubly secure ECG authentication framework is proposed which makes use of the important attributes of the PAM algorithm as a personal identification number (PIN). The PIN is used to extract different locations of ECG characteristics generating unique feature vectors. The presence of the correct PIN and ECG signals make the proposed authentication framework doubly secure. The performance of PAM is evaluated by comparing its receiver operating characteristic (ROC) curve with traditional temporal and amplitude feature extraction techniques on 100 Physikalisch-Technische Bundesanstalt (PTB) subjects. The evaluation of the biometric performance when different values of PIN are presented is also investigated. It is shown in this paper that different PIN values generate different feature vector sets while still providing consistent authentication performance","PeriodicalId":139268,"journal":{"name":"2011 7th International Conference on Information Assurance and Security (IAS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 7th International Conference on Information Assurance and Security (IAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIAS.2011.6122821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a new feature extraction technique called Pulse Active Mean (PAM) implemented on Electrocardiograms (ECG) for biometric authentication. A doubly secure ECG authentication framework is proposed which makes use of the important attributes of the PAM algorithm as a personal identification number (PIN). The PIN is used to extract different locations of ECG characteristics generating unique feature vectors. The presence of the correct PIN and ECG signals make the proposed authentication framework doubly secure. The performance of PAM is evaluated by comparing its receiver operating characteristic (ROC) curve with traditional temporal and amplitude feature extraction techniques on 100 Physikalisch-Technische Bundesanstalt (PTB) subjects. The evaluation of the biometric performance when different values of PIN are presented is also investigated. It is shown in this paper that different PIN values generate different feature vector sets while still providing consistent authentication performance
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脉冲主动均值(PAM):一种支持双重安全认证的PIN特征提取算法
本文提出了一种新的特征提取技术——脉冲有效均值(PAM),该技术应用于心电图的生物特征识别。提出了一种利用PAM算法的重要属性作为个人识别码(PIN)的双重安全心电认证框架。利用PIN提取不同位置的心电特征,生成唯一的特征向量。正确的PIN和心电信号的存在使所提出的认证框架具有双重安全性。通过对100名PTB (Physikalisch-Technische Bundesanstalt)受试者的受试者工作特征(ROC)曲线与传统的时间和幅度特征提取技术进行比较,评价了PAM的性能。研究了不同PIN值对生物识别性能的影响。本文表明,不同的PIN值在提供一致的认证性能的同时,会产生不同的特征向量集
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulse Active Mean (PAM): A PIN supporting feature extraction algorithm for doubly secure authentication A comparative study of feature extraction using PCA and LDA for face recognition A novel system for fingerprint privacy protection1 Ensemble based categorization and adaptive model for malware detection A secure joint wavelet based steganography and secret sharing method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1