{"title":"Load-aware shedding in stream processing systems","authors":"Nicolo Rivetti, Yann Busnel, Leonardo Querzoni","doi":"10.1145/2933267.2933311","DOIUrl":null,"url":null,"abstract":"Load shedding is a technique employed by stream processing systems to handle unpredictable spikes in the input load whenever available computing resources are not adequately provisioned. A load shedder drops tuples to keep the input load below a critical threshold and thus avoid tuple queuing and system trashing. In this paper we propose Load-Aware Shedding (LAS), a novel load shedding solution that drops tuples with the aim of maintaining queuing times below a tunable threshold. Tuple execution durations are estimated at runtime using efficient sketch data structures. We provide a theoretical analysis proving that LAS is an (ε, δ)-approximation of the optimal online load shedder and show its performance through a practical evaluation based both on simulations and on a running prototype.","PeriodicalId":277061,"journal":{"name":"Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2933267.2933311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
Load shedding is a technique employed by stream processing systems to handle unpredictable spikes in the input load whenever available computing resources are not adequately provisioned. A load shedder drops tuples to keep the input load below a critical threshold and thus avoid tuple queuing and system trashing. In this paper we propose Load-Aware Shedding (LAS), a novel load shedding solution that drops tuples with the aim of maintaining queuing times below a tunable threshold. Tuple execution durations are estimated at runtime using efficient sketch data structures. We provide a theoretical analysis proving that LAS is an (ε, δ)-approximation of the optimal online load shedder and show its performance through a practical evaluation based both on simulations and on a running prototype.