Training Object Detectors with Synthetic Data for Autonomous UAV Sampling Applications

Gordon A. Christie, Zachary Kurtz, Kevin Huber, J. Massey, Ian Courtney, C. Gifford, J. Humphreys, Alfred Mayalu, Rebecca Williams, J. Hunnell, Bernard Collins
{"title":"Training Object Detectors with Synthetic Data for Autonomous UAV Sampling Applications","authors":"Gordon A. Christie, Zachary Kurtz, Kevin Huber, J. Massey, Ian Courtney, C. Gifford, J. Humphreys, Alfred Mayalu, Rebecca Williams, J. Hunnell, Bernard Collins","doi":"10.1109/ICUAS.2018.8453336","DOIUrl":null,"url":null,"abstract":"Training accurate object detection models often requires a large amount training data. In some cases, limited imagery, from drastically different perspectives than the desired target view positions and angles, may be available for specific objects of interest. Training accurate models with this imagery may not be possible and require a lot of performance-limiting assumptions. However, it may be possible to use this limited imagery to create a 3D model of the targets and their surrounding area. In this paper, we explore training an object detector using only synthetic imagery to detect rooftop stacks for UAV sampling tasks. We show that this detector performs well on real imagery, and enables autonomous UAV sampling. We also note that this approach is general, and should extend to other objects.","PeriodicalId":246293,"journal":{"name":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2018.8453336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Training accurate object detection models often requires a large amount training data. In some cases, limited imagery, from drastically different perspectives than the desired target view positions and angles, may be available for specific objects of interest. Training accurate models with this imagery may not be possible and require a lot of performance-limiting assumptions. However, it may be possible to use this limited imagery to create a 3D model of the targets and their surrounding area. In this paper, we explore training an object detector using only synthetic imagery to detect rooftop stacks for UAV sampling tasks. We show that this detector performs well on real imagery, and enables autonomous UAV sampling. We also note that this approach is general, and should extend to other objects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用合成数据训练自主无人机采样应用中的目标检测器
训练准确的目标检测模型往往需要大量的训练数据。在某些情况下,有限的图像,从与期望的目标视图位置和角度完全不同的角度,可能可用于特定的感兴趣的对象。用这种图像训练准确的模型可能是不可能的,并且需要许多性能限制的假设。然而,使用这些有限的图像来创建目标及其周围区域的3D模型是可能的。在本文中,我们探索仅使用合成图像训练目标检测器来检测无人机采样任务的屋顶堆栈。我们证明了该探测器在真实图像上表现良好,并实现了无人机的自主采样。我们还注意到,这种方法是通用的,应该扩展到其他对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stabilization and Optimal Trajectory Generation for a Compact Aerial Manipulation System with a Delta-type Parallel Robot Vision-Based Autonomous Landing of a Multi-Copter Unmanned Aerial Vehicle using Reinforcement Learning Nonlinear Flight Control Design for Maneuvering Flight of Quadrotors in High Speed and Large Acceleration Integrated Navigation Based on DME+VOR/INS Under the Integrated Radio Condition Vision-based Integrated Navigation System and Optimal Allocation in Formation Flying
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1