High-dimensional face data separation for recognition via low-rank constraints

Tan Guo, Xiaoheng Tan
{"title":"High-dimensional face data separation for recognition via low-rank constraints","authors":"Tan Guo, Xiaoheng Tan","doi":"10.1109/TENCON.2016.7848629","DOIUrl":null,"url":null,"abstract":"Sparse and low-rank modeling have been proved to be promising techniques for visual understanding. Based on the methodology, this paper proposes a novel method for robust face recognition, where both the training and test samples might contain corruption or occlusion. In the method, illumination model and low rank matrix recovery with structural incoherent between different training classes are united for separating discriminant low-rank identification information matrix and error matrix, based on which a sparse and dense combined representation of corrupted test sample is calculated. The representation together with the two parts of information dictionaries are utilized for the final identification of test sample. The experimental results show the effectiveness of the method.","PeriodicalId":246458,"journal":{"name":"2016 IEEE Region 10 Conference (TENCON)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Region 10 Conference (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2016.7848629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sparse and low-rank modeling have been proved to be promising techniques for visual understanding. Based on the methodology, this paper proposes a novel method for robust face recognition, where both the training and test samples might contain corruption or occlusion. In the method, illumination model and low rank matrix recovery with structural incoherent between different training classes are united for separating discriminant low-rank identification information matrix and error matrix, based on which a sparse and dense combined representation of corrupted test sample is calculated. The representation together with the two parts of information dictionaries are utilized for the final identification of test sample. The experimental results show the effectiveness of the method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于低秩约束的高维人脸数据分离识别
稀疏和低秩建模已被证明是很有前途的视觉理解技术。在此基础上,本文提出了一种新的鲁棒人脸识别方法,该方法在训练样本和测试样本中都可能包含损坏或遮挡。该方法将光照模型与不同训练类别间结构不一致的低秩矩阵恢复相结合,分离判别性低秩识别信息矩阵和误差矩阵,在此基础上计算出损坏测试样本的稀疏和密集组合表示。该表示与信息字典的两部分一起用于测试样本的最终识别。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D printing of a pavlova Application of hybrid artificial neural network algorithm for the prediction of standardized precipitation index GaN based μLED drive circuit for Visible Light Communication (VLC) with improved linearity using on-chip optical feedback Automatic image classification in intravascular optical coherence tomography images A rapid and reliable approach for optimal design of an electromagnetic nanopositioning actuator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1