Dark-to-Arc Transition in Air for Planar Electrodes with Microscale Gaps *

Andrew D. Strongrich, Gayathri Shivkumar, Alina A. Alexeenko, D. Peroulis
{"title":"Dark-to-Arc Transition in Air for Planar Electrodes with Microscale Gaps *","authors":"Andrew D. Strongrich, Gayathri Shivkumar, Alina A. Alexeenko, D. Peroulis","doi":"10.1109/PLASMA.2017.8496326","DOIUrl":null,"url":null,"abstract":"Electrical breakdown at threshold voltages predicted by Paschen's law occurs due to electron avalanches created by electron impact ionization and secondary electron emission from the electrodes. For a typical gas discharge, breakdown marks the end of the Townsend dark discharge regime and is followed by the normal glow regime where the current stays constant over a long range of voltages. For such a discharge, the electrode sheath is sustained by secondary electrons and the sheath thickness corresponds to the electrode gap at Stoletov's point for a given gas pressure 1. At microscale electrode gaps, quantum tunneling of electrons from the cathode, termed field emission, becomes significant thereby reducing the breakdown voltage. This follows the modified Paschen curve 2. However, breakdown in some configurations, namely planar electrodes, is not followed by the normal glow regime, but transitions directly into the arc regime where the current spikes to high values 3.","PeriodicalId":145705,"journal":{"name":"2017 IEEE International Conference on Plasma Science (ICOPS)","volume":"13 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2017.8496326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrical breakdown at threshold voltages predicted by Paschen's law occurs due to electron avalanches created by electron impact ionization and secondary electron emission from the electrodes. For a typical gas discharge, breakdown marks the end of the Townsend dark discharge regime and is followed by the normal glow regime where the current stays constant over a long range of voltages. For such a discharge, the electrode sheath is sustained by secondary electrons and the sheath thickness corresponds to the electrode gap at Stoletov's point for a given gas pressure 1. At microscale electrode gaps, quantum tunneling of electrons from the cathode, termed field emission, becomes significant thereby reducing the breakdown voltage. This follows the modified Paschen curve 2. However, breakdown in some configurations, namely planar electrodes, is not followed by the normal glow regime, but transitions directly into the arc regime where the current spikes to high values 3.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有微尺度间隙的平面电极在空气中的暗弧转换*
在Paschen定律预测的阈值电压下,由于电子冲击电离和二次电子发射产生的电子雪崩而发生电击穿。对于典型的气体放电,击穿标志着汤森暗放电制度的结束,然后是正常的辉光制度,其中电流在长电压范围内保持恒定。对于这样的放电,电极护套由二次电子维持,护套厚度对应于给定气体压力1下斯托列托夫点处的电极间隙。在微尺度的电极间隙,电子从阴极的量子隧穿,称为场发射,变得重要,从而降低击穿电压。这遵循修改后的Paschen曲线2。然而,在某些结构中,即平面电极,击穿后不是正常的发光状态,而是直接过渡到电弧状态,其中电流峰值达到高值3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Amplification Due to the Two-Stream Instability of Self-Electric and Magnetic Fields of an Ion or Electron Beam Propagating in Background Plasma Surface Discharge Phenomena On Synthetic Ester-Pressboard Interface: Effect Of Moisture Investigating the Growth Modification of Various Plant Species via Atmospheric Pressure Plasma Jets Spectroscopic Measurements of the Formation of a Conical Section of Spherically Imploding Plasma Liners* The Effect of the Type of Gas on Underwater Discharge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1