Active exploration for body model learning through self-touch on a humanoid robot with artificial skin

Filipe Gama, M. Shcherban, Matthias Rolf, M. Hoffmann
{"title":"Active exploration for body model learning through self-touch on a humanoid robot with artificial skin","authors":"Filipe Gama, M. Shcherban, Matthias Rolf, M. Hoffmann","doi":"10.1109/ICDL-EpiRob48136.2020.9278035","DOIUrl":null,"url":null,"abstract":"The mechanisms of infant development are far from understood. Learning about one's own body is likely a foundation for subsequent development. Here we look specifically at the problem of how spontaneous touches to the body in early infancy may give rise to first body models and bootstrap further development such as reaching competence. Unlike visually elicited reaching, reaching to own body requires connections of the tactile and motor space only, bypassing vision. Still, the problems of high dimensionality and redundancy of the motor system persist. In this work, we present an embodied computational model on a simulated humanoid robot with artificial sensitive skin on large areas of its body. The robot should autonomously develop the capacity to reach for every tactile sensor on its body. To do this efficiently, we employ the computational framework of intrinsic motivations and variants of goal babbling-as opposed to motor babbling-that prove to make the exploration process faster and alleviate the ill-posedness of learning inverse kinematics. Based on our results, we discuss the next steps in relation to infant studies: what information will be necessary to further ground this computational model in behavioral data.","PeriodicalId":114948,"journal":{"name":"2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL-EpiRob48136.2020.9278035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The mechanisms of infant development are far from understood. Learning about one's own body is likely a foundation for subsequent development. Here we look specifically at the problem of how spontaneous touches to the body in early infancy may give rise to first body models and bootstrap further development such as reaching competence. Unlike visually elicited reaching, reaching to own body requires connections of the tactile and motor space only, bypassing vision. Still, the problems of high dimensionality and redundancy of the motor system persist. In this work, we present an embodied computational model on a simulated humanoid robot with artificial sensitive skin on large areas of its body. The robot should autonomously develop the capacity to reach for every tactile sensor on its body. To do this efficiently, we employ the computational framework of intrinsic motivations and variants of goal babbling-as opposed to motor babbling-that prove to make the exploration process faster and alleviate the ill-posedness of learning inverse kinematics. Based on our results, we discuss the next steps in relation to infant studies: what information will be necessary to further ground this computational model in behavioral data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工皮肤的仿人机器人自触学习身体模型的主动探索
婴儿发育的机制尚不清楚。了解自己的身体可能是后续发展的基础。在这里,我们特别关注婴儿早期对身体的自发触摸如何产生第一身体模型并引导进一步发展,如达到能力。与视觉唤起的伸手不同,伸手到自己的身体只需要触觉和运动空间的连接,绕过视觉。然而,电机系统的高维和冗余问题仍然存在。在这项工作中,我们提出了一个具有大面积人工敏感皮肤的模拟人形机器人的具体计算模型。机器人应该自主发展能够触及身体上每一个触觉传感器的能力。为了有效地做到这一点,我们采用了内在动机和目标牙牙学变体的计算框架——与运动牙牙学相反——这证明了探索过程更快,减轻了学习逆运动学的不适。基于我们的结果,我们讨论了与婴儿研究相关的下一步:哪些信息将是进一步在行为数据中建立这个计算模型所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-level representations through unconstrained sensorimotor learning Language Acquisition with Echo State Networks: Towards Unsupervised Learning Picture completion reveals developmental change in representational drawing ability: An analysis using a convolutional neural network Fast Developmental Stereo-Disparity Detectors Modeling robot co-representation: state-of-the-art, open issues, and predictive learning as a possible framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1