Image Segmentation based on discrete Krawtchouk Moment and Quantum Neural Network

Zhen Liu, Jinming Shi, Zhongying Bai
{"title":"Image Segmentation based on discrete Krawtchouk Moment and Quantum Neural Network","authors":"Zhen Liu, Jinming Shi, Zhongying Bai","doi":"10.1109/ICIEA.2007.4318454","DOIUrl":null,"url":null,"abstract":"A new image segmentation method based on discrete Krawtchouk moments and Quantum neural networks is presented. The Krawtchouk moments in certain local window of each pixel in the image are computed and input to quantum neural network . Quantum neural networks, which use multilevel transfer function, have the inherent fuzzy characteristics. The point accommodates to the connatural uncertainty of fractional image data in image segmentation procession. Experiments confirm that the performance of our proposed methods is more accurate and has less iterative time in comparison with the traditional segmentation methods based on Legendre moments and BP neutral networks.","PeriodicalId":231682,"journal":{"name":"2007 2nd IEEE Conference on Industrial Electronics and Applications","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE Conference on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2007.4318454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A new image segmentation method based on discrete Krawtchouk moments and Quantum neural networks is presented. The Krawtchouk moments in certain local window of each pixel in the image are computed and input to quantum neural network . Quantum neural networks, which use multilevel transfer function, have the inherent fuzzy characteristics. The point accommodates to the connatural uncertainty of fractional image data in image segmentation procession. Experiments confirm that the performance of our proposed methods is more accurate and has less iterative time in comparison with the traditional segmentation methods based on Legendre moments and BP neutral networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于离散克劳tchouk矩和量子神经网络的图像分割
提出了一种基于离散克劳tchouk矩和量子神经网络的图像分割方法。计算图像中每个像素的局部窗口的克劳丘克矩,并将其输入到量子神经网络中。量子神经网络采用多级传递函数,具有固有的模糊性。该点适用于图像分割处理中分数图像数据的自然不确定性。实验证明,与传统的基于Legendre矩和BP神经网络的分割方法相比,本文方法的分割精度更高,迭代时间更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-line Particle Swarm Optimization of Anti-Windup Speed Controller for PMSM Drive System A Novel Method on Parallel Robot's Pose Measuring and Calibration Robust Controller Design of a Single-Phase AC/DC PWM Converter Sliding Mode Control with Integral Compensation and Fuzzy Tuning for Hydraulic Flight Motion Simulator An Optimal Design of Low Complexity Interpolation Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1