Landmark Progression in Heuristic Search

Clemens Büchner, Thomas Keller, Salomé Eriksson, M. Helmert
{"title":"Landmark Progression in Heuristic Search","authors":"Clemens Büchner, Thomas Keller, Salomé Eriksson, M. Helmert","doi":"10.1609/icaps.v33i1.27180","DOIUrl":null,"url":null,"abstract":"The computation of high-quality landmarks and orderings for heuristic\nstate-space search is often prohibitively expensive to be performed in\nevery generated state. Computing information only for the initial\nstate and progressing it from every state to its successors is a\nsuccessful alternative, exploited for example in classical planning by\nthe LAMA planner. We propose a general framework for using landmarks\nin any kind of best-first search. Its core component, the progression\nfunction, uses orderings and search history to determine which\nlandmarks must still be achieved. We show that the progression\nfunction that is used in LAMA infers invalid information in the\npresence of reasonable orderings. We define a sound progression\nfunction that allows to exploit reasonable orderings in cost-optimal\nplanning and show empirically that our new progression function is\nbeneficial both in satisficing and optimal planning.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v33i1.27180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The computation of high-quality landmarks and orderings for heuristic state-space search is often prohibitively expensive to be performed in every generated state. Computing information only for the initial state and progressing it from every state to its successors is a successful alternative, exploited for example in classical planning by the LAMA planner. We propose a general framework for using landmarks in any kind of best-first search. Its core component, the progression function, uses orderings and search history to determine which landmarks must still be achieved. We show that the progression function that is used in LAMA infers invalid information in the presence of reasonable orderings. We define a sound progression function that allows to exploit reasonable orderings in cost-optimal planning and show empirically that our new progression function is beneficial both in satisficing and optimal planning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
启发式搜索的里程碑式进展
启发式状态空间搜索的高质量地标和排序的计算通常非常昂贵,无法在每个生成的状态中执行。仅计算初始状态的信息并将其从每个状态推进到后续状态是一种成功的替代方案,例如在经典规划中被LAMA规划器利用。我们提出了在任何类型的最佳优先搜索中使用地标的一般框架。它的核心组件,进度功能,使用排序和搜索历史来确定哪些地标必须达到。我们证明了在LAMA中使用的递进函数在存在合理排序的情况下推断无效信息。我们定义了一个合理的进度函数,允许在成本最优规划中开发合理的排序,并通过经验证明我们的新进度函数在满足和最优规划中都是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Robust Resource-Constrained Scheduling with Graph Neural Networks Solving the Multi-Choice Two Dimensional Shelf Strip Packing Problem with Time Windows Generalizing Action Justification and Causal Links to Policies Exact Anytime Multi-Agent Path Finding Using Branch-and-Cut-and-Price and Large Neighborhood Search A Constraint Programming Solution to the Guillotine Rectangular Cutting Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1