Taming Metadata-intensive HPC Jobs Through Dynamic, Application-agnostic QoS Control

Ricardo Macedo, Mariana Miranda, Y. Tanimura, J. Haga, Amit Ruhela, Stephen Lien Harrell, R. T. Evans, J. Pereira, J. Paulo
{"title":"Taming Metadata-intensive HPC Jobs Through Dynamic, Application-agnostic QoS Control","authors":"Ricardo Macedo, Mariana Miranda, Y. Tanimura, J. Haga, Amit Ruhela, Stephen Lien Harrell, R. T. Evans, J. Pereira, J. Paulo","doi":"10.1109/CCGrid57682.2023.00015","DOIUrl":null,"url":null,"abstract":"Modern I/O applications that run on HPC infrastructures are increasingly becoming read and metadata intensive. However, having multiple applications submitting large amounts of metadata operations can easily saturate the shared parallel file system's metadata resources, leading to overall performance degradation and I/O unfairness. We present PADLL, an application and file system agnostic storage middleware that enables QoS control of data and metadata workflows in HPC storage systems. It adopts ideas from Software-Defined Storage, building data plane stages that mediate and rate limit POSIX requests submitted to the shared file system, and a control plane that holistically coordinates how all I/O workflows are handled. We demonstrate its performance and feasibility under multiple QoS policies using synthetic benchmarks, real-world applications, and traces collected from a production file system. Results show that PADLL can enforce complex storage QoS policies over concurrent metadata-aggressive jobs, ensuring fairness and prioritization.","PeriodicalId":363806,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid57682.2023.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Modern I/O applications that run on HPC infrastructures are increasingly becoming read and metadata intensive. However, having multiple applications submitting large amounts of metadata operations can easily saturate the shared parallel file system's metadata resources, leading to overall performance degradation and I/O unfairness. We present PADLL, an application and file system agnostic storage middleware that enables QoS control of data and metadata workflows in HPC storage systems. It adopts ideas from Software-Defined Storage, building data plane stages that mediate and rate limit POSIX requests submitted to the shared file system, and a control plane that holistically coordinates how all I/O workflows are handled. We demonstrate its performance and feasibility under multiple QoS policies using synthetic benchmarks, real-world applications, and traces collected from a production file system. Results show that PADLL can enforce complex storage QoS policies over concurrent metadata-aggressive jobs, ensuring fairness and prioritization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过动态的、与应用无关的QoS控制来驯服元数据密集型HPC作业
运行在高性能计算基础设施上的现代I/O应用程序正日益成为读取和元数据密集型应用程序。但是,让多个应用程序提交大量元数据操作很容易使共享并行文件系统的元数据资源饱和,从而导致整体性能下降和I/O不公平。我们提出了PADLL,一个应用程序和文件系统无关的存储中间件,使数据和元数据工作流在高性能计算存储系统的QoS控制。它采用了软件定义存储的思想,构建了数据平面阶段,对提交给共享文件系统的POSIX请求进行调解和速率限制,以及一个整体协调所有I/O工作流处理方式的控制平面。我们使用综合基准测试、实际应用程序和从生产文件系统收集的跟踪来演示其在多个QoS策略下的性能和可行性。结果表明,PADLL可以对并发元数据攻击作业执行复杂的存储QoS策略,确保公平性和优先级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HeROfake: Heterogeneous Resources Orchestration in a Serverless Cloud – An Application to Deepfake Detection hsSpMV: A Heterogeneous and SPM-aggregated SpMV for SW26010-Pro many-core processor CacheIn: A Secure Distributed Multi-layer Mobility-Assisted Edge Intelligence based Caching for Internet of Vehicles AggFirstJoin: Optimizing Geo-Distributed Joins using Aggregation-Based Transformations A Cloud-Fog Architecture for Video Analytics on Large Scale Camera Networks Using Semantic Scene Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1