{"title":"Cell Association for Multi Band 5G Cellular HetNets based on NBS","authors":"A. Zakaria, A. Hussein","doi":"10.1109/ICM.2018.8704053","DOIUrl":null,"url":null,"abstract":"A future mobile trend is that traffic generated by smartphones will dominate even more than it does today. Recently, smartphone traffic is expected to increase by 10 times and total mobile traffic for all devices by 8 times and more than 90 percent of mobile data traffic will come from smartphones. For this reasons mobile users will need to be actively pushed onto the 5th generation mobile (5G), builds upon today's 4G mobile network technology, which promises to offer a higher connection speeds with lower latency, or time delays. In 5G, whatever the technology used, a user association technique is needed to determine whether a user is associated with a particular base station (BS) before data transmission starts. User association plays an indispensable role in enhancing the load balancing, the spectrum efficiency, and the energy efficiency of networks. The challenge here, is to make the appropriate association that achieve the minimum required data rate for each user with acceptable complexity. In this paper, the pragmatic user association is formulated as an optimization problem, which is resolved by Nash Bargaining Solution (NBS). Simulation results show that the proposed algorithm can enable network operators to support fair resource allocation and ensure that users can be served equitably by both macro cell and pico cell. Also this paper provide an algorithm with low-complexity and reaches to near-optimal solution with a high performance guarantee.","PeriodicalId":305356,"journal":{"name":"2018 30th International Conference on Microelectronics (ICM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2018.8704053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A future mobile trend is that traffic generated by smartphones will dominate even more than it does today. Recently, smartphone traffic is expected to increase by 10 times and total mobile traffic for all devices by 8 times and more than 90 percent of mobile data traffic will come from smartphones. For this reasons mobile users will need to be actively pushed onto the 5th generation mobile (5G), builds upon today's 4G mobile network technology, which promises to offer a higher connection speeds with lower latency, or time delays. In 5G, whatever the technology used, a user association technique is needed to determine whether a user is associated with a particular base station (BS) before data transmission starts. User association plays an indispensable role in enhancing the load balancing, the spectrum efficiency, and the energy efficiency of networks. The challenge here, is to make the appropriate association that achieve the minimum required data rate for each user with acceptable complexity. In this paper, the pragmatic user association is formulated as an optimization problem, which is resolved by Nash Bargaining Solution (NBS). Simulation results show that the proposed algorithm can enable network operators to support fair resource allocation and ensure that users can be served equitably by both macro cell and pico cell. Also this paper provide an algorithm with low-complexity and reaches to near-optimal solution with a high performance guarantee.