Parallel evolutionary multiobjective methodology for granularity and rule base learning in linguistic fuzzy systems

Juan M. Bardallo, Miguel A. De Vega, F. A. Márquez, A. Peregrín
{"title":"Parallel evolutionary multiobjective methodology for granularity and rule base learning in linguistic fuzzy systems","authors":"Juan M. Bardallo, Miguel A. De Vega, F. A. Márquez, A. Peregrín","doi":"10.1109/FUZZY.2009.5277343","DOIUrl":null,"url":null,"abstract":"In this paper we present a parallel evolutionary multi-objective methodology for granularity and rule-based learning for Mamdani Fuzzy Systems. The proposed methodology produces a set of solutions with different trade-off between accuracy and interpretability, based on searching the number of labels and the fuzzy rules, and also makes a variable selection. This process is achieved by exploiting present parallel computer systems allowing it to deal with more complex models.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we present a parallel evolutionary multi-objective methodology for granularity and rule-based learning for Mamdani Fuzzy Systems. The proposed methodology produces a set of solutions with different trade-off between accuracy and interpretability, based on searching the number of labels and the fuzzy rules, and also makes a variable selection. This process is achieved by exploiting present parallel computer systems allowing it to deal with more complex models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语言模糊系统中粒度和规则库学习的并行进化多目标方法
本文提出了一种并行进化多目标方法,用于Mamdani模糊系统的粒度和基于规则的学习。该方法通过对标签数量和模糊规则的搜索,生成了一组在精度和可解释性之间权衡不同的解,并进行了变量选择。这个过程是通过利用现有的并行计算机系统来实现的,允许它处理更复杂的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and simulation of a hybrid controller for a multi-input multi-output magnetic suspension system Fuzzy CMAC structures Hybrid SVM-GPs learning for modeling of molecular autoregulatory feedback loop systems with outliers On-line adaptive T-S fuzzy neural control for active suspension systems Analyzing KANSEI from facial expressions with fuzzy quantification theory II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1