Local support vector machine based dimension reduction

Linxi Li, Qin Wang, Chenlu Ke
{"title":"Local support vector machine based dimension reduction","authors":"Linxi Li, Qin Wang, Chenlu Ke","doi":"10.1002/sam.11600","DOIUrl":null,"url":null,"abstract":"Motivated by several recent work that adopt support vector machines into the sufficient dimension reduction research, we propose a local support vector machine based dimension reduction approach. The proposal deals with continuous and binary responses, linear and nonlinear dimension reduction in a unified framework. The localization can also help relax the stringent probabilistic assumptions required by the global methods. Numerical experiments and a real data application demonstrate the efficacy of the proposed approach.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Motivated by several recent work that adopt support vector machines into the sufficient dimension reduction research, we propose a local support vector machine based dimension reduction approach. The proposal deals with continuous and binary responses, linear and nonlinear dimension reduction in a unified framework. The localization can also help relax the stringent probabilistic assumptions required by the global methods. Numerical experiments and a real data application demonstrate the efficacy of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部支持向量机的降维
受近年来一些将支持向量机引入到充分降维研究的启发,我们提出了一种基于局部支持向量机的降维方法。该方案在一个统一的框架中处理连续响应和二元响应,线性和非线性降维。局部化还可以帮助放松全局方法所要求的严格概率假设。数值实验和实际数据应用验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural interval‐censored survival regression with feature selection Bayesian batch optimization for molybdenum versus tungsten inertial confinement fusion double shell target design Gaussian process selections in semiparametric multi‐kernel machine regression for multi‐pathway analysis An automated alignment algorithm for identification of the source of footwear impressions with common class characteristics Confidence bounds for threshold similarity graph in random variable network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1