M. Mauriello, Emmanuel Thierry Lincoln, Grace Hon, Dorien Simon, Dan Jurafsky, P. Paredes
{"title":"SAD: A Stress Annotated Dataset for Recognizing Everyday Stressors in SMS-like Conversational Systems","authors":"M. Mauriello, Emmanuel Thierry Lincoln, Grace Hon, Dorien Simon, Dan Jurafsky, P. Paredes","doi":"10.1145/3411763.3451799","DOIUrl":null,"url":null,"abstract":"There is limited infrastructure for providing stress management services to those in need. To address this problem, chatbots are viewed as a scalable solution. However, one limiting factor is having clear definitions and examples of daily stress on which to build models and methods for routing appropriate advice during conversations. We developed a dataset of 6850 SMS-like sentences that can be used to classify input using a scheme of 9 stressor categories derived from: stress management literature, live conversations from a prototype chatbot system, crowdsourcing, and targeted web scraping from an online repository. In addition to releasing this dataset, we show results that are promising for classification purposes. Our contributions include: (i) a categorization of daily stressors, (ii) a dataset of SMS-like sentences, (iii) an analysis of this dataset that demonstrates its potential efficacy, and (iv) a demonstration of its utility for implementation via a simulation of model response times.","PeriodicalId":265192,"journal":{"name":"Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411763.3451799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
There is limited infrastructure for providing stress management services to those in need. To address this problem, chatbots are viewed as a scalable solution. However, one limiting factor is having clear definitions and examples of daily stress on which to build models and methods for routing appropriate advice during conversations. We developed a dataset of 6850 SMS-like sentences that can be used to classify input using a scheme of 9 stressor categories derived from: stress management literature, live conversations from a prototype chatbot system, crowdsourcing, and targeted web scraping from an online repository. In addition to releasing this dataset, we show results that are promising for classification purposes. Our contributions include: (i) a categorization of daily stressors, (ii) a dataset of SMS-like sentences, (iii) an analysis of this dataset that demonstrates its potential efficacy, and (iv) a demonstration of its utility for implementation via a simulation of model response times.