Deep morphological gradient for recognition of Arabic alphabets

Mouhssine El Atillah, Khalid Elfazazy
{"title":"Deep morphological gradient for recognition of Arabic alphabets","authors":"Mouhssine El Atillah, Khalid Elfazazy","doi":"10.1109/ISACS48493.2019.9068868","DOIUrl":null,"url":null,"abstract":"The recognition of Arabic handwritten characters by deep learning algorithms has experienced a remarkable movement in the last three years. This change can enrich the field of optical character recognition (OCR). We present in this project a deep morphological gradient for the handwritten characters recognition problem of the Arabic language based on a multilayer perceptron architecture (MLP) preceded by the morphological gradient algorithm to detect the outlines of the alphabets. This model is applied to the database of Arabic manuscript characters available on Kaggle which consists of 16,800 images. The classification accuracy of the model was 99.9% with a very minimum loss of 0.3%.","PeriodicalId":312521,"journal":{"name":"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACS48493.2019.9068868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The recognition of Arabic handwritten characters by deep learning algorithms has experienced a remarkable movement in the last three years. This change can enrich the field of optical character recognition (OCR). We present in this project a deep morphological gradient for the handwritten characters recognition problem of the Arabic language based on a multilayer perceptron architecture (MLP) preceded by the morphological gradient algorithm to detect the outlines of the alphabets. This model is applied to the database of Arabic manuscript characters available on Kaggle which consists of 16,800 images. The classification accuracy of the model was 99.9% with a very minimum loss of 0.3%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于识别阿拉伯字母的深度形态梯度
在过去的三年里,深度学习算法对阿拉伯手写字符的识别经历了一个显著的变化。这种变化丰富了光学字符识别(OCR)领域。在这个项目中,我们提出了一个基于多层感知器架构(MLP)的深度形态梯度的阿拉伯语手写字符识别问题,该结构基于形态梯度算法来检测字母的轮廓。该模型应用于Kaggle上的阿拉伯语手稿字符数据库,该数据库包含16800个图像。该模型的分类准确率为99.9%,最小损失为0.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical simulation of the SIR and Lotka-Volterra models used in biology Delay dependent Stability analysis of Teleoperation Systems via input output approach Hybrid Feature Learning and Engineering Based Approach for Face Shape Classification Control of variable speed wind energy conversion systems by fuzzy logic and conventional P&O An Iterative Approach for Modeling a Photovoltaic Module using the Complete Single-Diode Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1