A Chest X-ray Image Retrieval System for COVID-19 Detection using Deep Transfer Learning and Denoising Auto Encoder

O. Layode, M. Rahman
{"title":"A Chest X-ray Image Retrieval System for COVID-19 Detection using Deep Transfer Learning and Denoising Auto Encoder","authors":"O. Layode, M. Rahman","doi":"10.1109/CSCI51800.2020.00301","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic is the defining global health crisis of our time which is currently challenging families, communities, health care systems, and government all over the world. It is critical to detect and isolate the positive cases as early as possible for timely treatment to prevent the further spread of the virus. It was found in few early studies that patients present abnormalities in chest radiography images that are characteristic of those infected with COVID-19. In the current context, a rapid, accessible and automated screening tool based on image processing of chest X-rays (CXRs) would be much needed as a quick alternative to PCR testing, especially with commonly available X-ray machines and without the dedicated test kits in labs and hospitals. Several classifications based approaches have been proposed recently with encouraging results to detect pneumonia based on CXRs using supervised deep transfer learning techniques based on Convolutional Neural Networks (CNNs). These black box approaches are mainly non-interactive in nature and their prediction represents just a cue to the radiologist. This work focuses on issues related to the development of such an automated system for CXRs by performing discriminative feature learning using deep neural networks with a purely data driven approach and retrieving images based on an unknown query image and performing retrieval evaluation on currently available benchmark datasets towards the goal of realistic comparison and real clinical integration. The system is trained and tested on an image collection of 1700 CXRs obtained from two different resources with encouraging results based on precision and recall measures in individual deep feature spaces. It is hoped that the proposed system as diagnostic aid would reduce the visual observation error of human operators and enhance sensitivity in testing for Covid-19 detection.","PeriodicalId":336929,"journal":{"name":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI51800.2020.00301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The COVID-19 pandemic is the defining global health crisis of our time which is currently challenging families, communities, health care systems, and government all over the world. It is critical to detect and isolate the positive cases as early as possible for timely treatment to prevent the further spread of the virus. It was found in few early studies that patients present abnormalities in chest radiography images that are characteristic of those infected with COVID-19. In the current context, a rapid, accessible and automated screening tool based on image processing of chest X-rays (CXRs) would be much needed as a quick alternative to PCR testing, especially with commonly available X-ray machines and without the dedicated test kits in labs and hospitals. Several classifications based approaches have been proposed recently with encouraging results to detect pneumonia based on CXRs using supervised deep transfer learning techniques based on Convolutional Neural Networks (CNNs). These black box approaches are mainly non-interactive in nature and their prediction represents just a cue to the radiologist. This work focuses on issues related to the development of such an automated system for CXRs by performing discriminative feature learning using deep neural networks with a purely data driven approach and retrieving images based on an unknown query image and performing retrieval evaluation on currently available benchmark datasets towards the goal of realistic comparison and real clinical integration. The system is trained and tested on an image collection of 1700 CXRs obtained from two different resources with encouraging results based on precision and recall measures in individual deep feature spaces. It is hoped that the proposed system as diagnostic aid would reduce the visual observation error of human operators and enhance sensitivity in testing for Covid-19 detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度迁移学习和去噪自动编码器的COVID-19胸部x线图像检索系统
COVID-19大流行是我们这个时代决定性的全球卫生危机,目前正在挑战世界各地的家庭、社区、卫生保健系统和政府。尽早发现和隔离阳性病例,及时治疗,防止病毒进一步传播至关重要。在一些早期研究中发现,患者在胸片图像中表现出COVID-19感染者特有的异常。在目前的情况下,迫切需要一种基于胸部x射线图像处理的快速、可获得和自动化的筛查工具,作为PCR检测的快速替代方案,特别是使用常用的x射线机,而实验室和医院没有专用的检测试剂盒。最近提出了几种基于分类的方法,使用基于卷积神经网络(cnn)的监督深度迁移学习技术来检测基于cxr的肺炎,并取得了令人鼓舞的结果。这些黑盒方法本质上主要是非交互式的,它们的预测只是给放射科医生一个提示。这项工作的重点是与开发这样一个自动化系统相关的问题,通过使用纯数据驱动的方法使用深度神经网络进行判别特征学习,基于未知查询图像检索图像,并对当前可用的基准数据集进行检索评估,以实现现实比较和真正的临床整合。该系统在从两个不同资源获得的1700个cxr图像集上进行了训练和测试,基于单个深度特征空间的精度和召回度量,结果令人鼓舞。希望该系统作为诊断辅助,能够减少操作人员的视觉观察误差,提高新冠病毒检测的灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
First Success of Cancer Gene Data Analysis of 169 Microarrays for Medical Diagnosis Artificial Intelligence in Computerized Adaptive Testing Evidence for Monitoring the User and Computing the User’s trust Transfer of Hierarchical Reinforcement Learning Structures for Robotic Manipulation Tasks An open-source application built with R programming language for clinical laboratories to innovate process of excellence and overcome the uncertain outlook during the global healthcare crisis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1