Face detection using data mining approach

Amol S. Jumde, S. Sonavane, R. Behera
{"title":"Face detection using data mining approach","authors":"Amol S. Jumde, S. Sonavane, R. Behera","doi":"10.1109/ICCSP.2015.7322542","DOIUrl":null,"url":null,"abstract":"Face detection has become a fundamental task in computer vision and pattern recognition applications. This paper describes a system for face detection using data mining approach. The proposed face detection method is a two phase process comprising of training and detection phase. In the training phase, training image is transformed into an edge and non-edge image. Maximal Frequent Itemset Algorithm (MAFIA) is used to mine positive and negative feature patterns from edge and non-edge images respectively. Based on the feature patterns mined, a face detector is constructed to prune non-face candidates. In the detection phase, sliding window approach is applied to the test image in different scales. Experimental results on FEI face database show good performance even across different orientations, pose and expression variations to a certain extent.","PeriodicalId":174192,"journal":{"name":"2015 International Conference on Communications and Signal Processing (ICCSP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Communications and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2015.7322542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Face detection has become a fundamental task in computer vision and pattern recognition applications. This paper describes a system for face detection using data mining approach. The proposed face detection method is a two phase process comprising of training and detection phase. In the training phase, training image is transformed into an edge and non-edge image. Maximal Frequent Itemset Algorithm (MAFIA) is used to mine positive and negative feature patterns from edge and non-edge images respectively. Based on the feature patterns mined, a face detector is constructed to prune non-face candidates. In the detection phase, sliding window approach is applied to the test image in different scales. Experimental results on FEI face database show good performance even across different orientations, pose and expression variations to a certain extent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据挖掘的人脸检测方法
人脸检测已经成为计算机视觉和模式识别应用中的一项基本任务。本文介绍了一种基于数据挖掘的人脸检测系统。所提出的人脸检测方法分为训练和检测两个阶段。在训练阶段,将训练图像变换为边缘图像和非边缘图像。利用最大频繁项集算法(maximum frequency Itemset Algorithm, MAFIA)分别从边缘和非边缘图像中挖掘正、负特征模式。基于所挖掘的特征模式,构造一个人脸检测器来修剪非人脸候选图像。在检测阶段,对不同尺度的测试图像采用滑动窗口方法。在FEI人脸数据库上的实验结果表明,即使在不同的方向、姿态和表情变化下,也有一定程度的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved scheduling algorithm using dynamic tree construction for wireless sensor networks Design of polyphase FIR filter using bypass feed direct multiplier Implementation of floating point fused basic arithmetic module using Verilog Comparison of conventional flip flops with pulse triggered generation using signal feed through technique A novel 2GHz highly efficiency improved class-E Power Amplifier for Base stations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1