Characterization and actuation of a magnetic photosensitive polymer cantilever

O. Ergeneman, M. Suter, G. Chatzipirpiridis, J. Zurcher, S. Graf, S. Pané, C. Hierold, B. Nelson
{"title":"Characterization and actuation of a magnetic photosensitive polymer cantilever","authors":"O. Ergeneman, M. Suter, G. Chatzipirpiridis, J. Zurcher, S. Graf, S. Pané, C. Hierold, B. Nelson","doi":"10.1109/ISOT.2009.5326063","DOIUrl":null,"url":null,"abstract":"Magnetic polymer microactuators made of SU-8 and superparamagnetic nanoparticles are reported. Homogenous distribution of nanoparticles in the composite was obtained using superparamagnetic nanoparticles and a surfactant. The magnetic polymer composite (MPC) was micromachined into cantilevers using photolithography. The magnetic characterization of the MPC was performed by a superconducting quantum interference device (SQUID). An electromagnet applied magnetic forces to this composite. The force per volume of composite was determined experimentally by measuring the force on a film of MPC using a micro-force sensor. The cantilevers were excited with an AC electromagnet at different frequencies, and their resonance modes were captured by a laser-Doppler vibrometer. Deflections were increased about 10 times by the addition of a DC field. The tip deflection amplitude of a cantilever (160 µm x 1.65 µm) in resonance was found to be 63 nm at 15.78kHz.","PeriodicalId":366216,"journal":{"name":"2009 International Symposium on Optomechatronic Technologies","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on Optomechatronic Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOT.2009.5326063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Magnetic polymer microactuators made of SU-8 and superparamagnetic nanoparticles are reported. Homogenous distribution of nanoparticles in the composite was obtained using superparamagnetic nanoparticles and a surfactant. The magnetic polymer composite (MPC) was micromachined into cantilevers using photolithography. The magnetic characterization of the MPC was performed by a superconducting quantum interference device (SQUID). An electromagnet applied magnetic forces to this composite. The force per volume of composite was determined experimentally by measuring the force on a film of MPC using a micro-force sensor. The cantilevers were excited with an AC electromagnet at different frequencies, and their resonance modes were captured by a laser-Doppler vibrometer. Deflections were increased about 10 times by the addition of a DC field. The tip deflection amplitude of a cantilever (160 µm x 1.65 µm) in resonance was found to be 63 nm at 15.78kHz.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁性光敏聚合物悬臂梁的表征与驱动
报道了由SU-8和超顺磁性纳米颗粒制成的磁性聚合物微致动器。利用超顺磁性纳米颗粒和表面活性剂,获得了纳米颗粒在复合材料中的均匀分布。采用光刻技术将磁性聚合物复合材料(MPC)微机械加工成悬臂梁。利用超导量子干涉器件(SQUID)对MPC进行了磁性表征。电磁铁对这种复合材料施加磁力。利用微力传感器测量MPC薄膜上的作用力,实验确定了复合材料的单位体积作用力。用交流电磁铁在不同频率下激发悬臂梁,用激光多普勒振动计捕捉其共振模式。加入直流电场后,偏转量增加了约10倍。悬臂梁(160 μ m x 1.65 μ m)在15.78kHz时的尖端挠度幅值为63 nm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of the behavior of a microcantilever based optomechatronic force sensor by finite element method Light driven Microfluidics High precision size tuning and stabilization of single salt-water microdroplets on a superhydrophobic surface An automatic color correction method inspired by the retinex and opponent colors theories Control of a quadrotor air vehicle by vanishing points in catadioptric images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1