K. Yako, Toyoji Yamamoto, K. Uejima, T. Ikezawa, M. Hane
{"title":"Parasitic resistance and leakage reduction by raised source / drain extention fabricated with cluster ion implantation and millisecond annealing","authors":"K. Yako, Toyoji Yamamoto, K. Uejima, T. Ikezawa, M. Hane","doi":"10.1109/RTP.2008.4690561","DOIUrl":null,"url":null,"abstract":"We designed and fabricated sub-30 nm gate length pMOSFETs developing the raised source/drain extension (RSDext) process. Our process features usages of cluster-ion (B18H22) implantation and high-temperature millisecond annealing processes and a facet-structure-control of the RSDext of less than 10 nm thickness for suppressing a fringe capacitance increase for the “effective” ultra-shallower junction formation. As the results, experimentally obtained our pMOSFETs with raised source/drain extension show almost the same LMIN, 1/2 times lower parasitic resistance and lower junction leakage.","PeriodicalId":317927,"journal":{"name":"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTP.2008.4690561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We designed and fabricated sub-30 nm gate length pMOSFETs developing the raised source/drain extension (RSDext) process. Our process features usages of cluster-ion (B18H22) implantation and high-temperature millisecond annealing processes and a facet-structure-control of the RSDext of less than 10 nm thickness for suppressing a fringe capacitance increase for the “effective” ultra-shallower junction formation. As the results, experimentally obtained our pMOSFETs with raised source/drain extension show almost the same LMIN, 1/2 times lower parasitic resistance and lower junction leakage.