Pub Date : 2008-12-02DOI: 10.1109/RTP.2008.4690546
D. Owen, Yun Wang, A. Hawryluk, Senquan Zhou, J. Hebb
The understanding and control of mechanical stresses accumulated during device fabrication is becoming more critical at advanced technology nodes. For example, e-SiGe is being used more and more extensively to strain the channel and improve PMOS performance. However, increases in Ge concentration result in increased susceptibility to strain relaxation and severe wafer deformation during advanced thermal processing. As a result, the precise control of the stress induced during annealing is becoming increasing important. This paper describes the use of a stress measurement technology, the Coherent Gradient Sensing (CGS) interferometer, for the characterization of deformation induced during micro-second laser annealing. The unique features of the CGS technique enable not only the characterization of the magnitude of wafer bow and warp, but the local uniformity of strain relaxation. Results are presented showing the relationship between wafer deformation and the fundamental parameters of micro-second laser annealing. In addition, the effects of processing history on laser anneal-induced deformation will also be evaluated, and techniques for managing stress accumulation across an entire process flow will be discussed.
{"title":"Characterization of deformation induced by micro-second laser anneal using CGS interferometry","authors":"D. Owen, Yun Wang, A. Hawryluk, Senquan Zhou, J. Hebb","doi":"10.1109/RTP.2008.4690546","DOIUrl":"https://doi.org/10.1109/RTP.2008.4690546","url":null,"abstract":"The understanding and control of mechanical stresses accumulated during device fabrication is becoming more critical at advanced technology nodes. For example, e-SiGe is being used more and more extensively to strain the channel and improve PMOS performance. However, increases in Ge concentration result in increased susceptibility to strain relaxation and severe wafer deformation during advanced thermal processing. As a result, the precise control of the stress induced during annealing is becoming increasing important. This paper describes the use of a stress measurement technology, the Coherent Gradient Sensing (CGS) interferometer, for the characterization of deformation induced during micro-second laser annealing. The unique features of the CGS technique enable not only the characterization of the magnitude of wafer bow and warp, but the local uniformity of strain relaxation. Results are presented showing the relationship between wafer deformation and the fundamental parameters of micro-second laser annealing. In addition, the effects of processing history on laser anneal-induced deformation will also be evaluated, and techniques for managing stress accumulation across an entire process flow will be discussed.","PeriodicalId":317927,"journal":{"name":"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123046037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-12-02DOI: 10.1109/RTP.2008.4690559
Yonah Cho, Yoshitaka Yokota, C. Olsen, A. Tjandra, Kai Ma, Vicky Nguyen
In order to meet increasing requirement for low thermal budget oxidation in memory and logic applications, RadOx™, previously known as in-situ steam generation (ISSG) oxidation, processes of low thermal budgets were developed. In this paper, oxides obtained by 700°C soak and 900–1050°C spike RadOx™ processes are presented. Sidewall growth behavior in STI-type structures were characterized and showed no bird’s beak encroachment by the developed oxidation processes. Basic bulk oxide (40Å) integrity and reliability characteristics were compared to the 1050°C soak RadOx™ reference. Using planar metal-on-semiconductor (MOS) capacitors as the test vehicles, flat-band voltage (Vfb), interface trap density (Dit), leakage current, and stress-induced leakage current (SILC) were measured. Vfb shift of less than 20mV and Dit less than 2×1011/cm2 were observed from the low temperature soak and spike oxides. Leakage currents from fresh devices and after high current stressing (0.1A/cm2) were comparable to the reference oxide.
{"title":"Quality and reliability of oxide by low thermal budget rapid thermal oxidation","authors":"Yonah Cho, Yoshitaka Yokota, C. Olsen, A. Tjandra, Kai Ma, Vicky Nguyen","doi":"10.1109/RTP.2008.4690559","DOIUrl":"https://doi.org/10.1109/RTP.2008.4690559","url":null,"abstract":"In order to meet increasing requirement for low thermal budget oxidation in memory and logic applications, RadOx™, previously known as in-situ steam generation (ISSG) oxidation, processes of low thermal budgets were developed. In this paper, oxides obtained by 700°C soak and 900–1050°C spike RadOx™ processes are presented. Sidewall growth behavior in STI-type structures were characterized and showed no bird’s beak encroachment by the developed oxidation processes. Basic bulk oxide (40Å) integrity and reliability characteristics were compared to the 1050°C soak RadOx™ reference. Using planar metal-on-semiconductor (MOS) capacitors as the test vehicles, flat-band voltage (V<inf>fb</inf>), interface trap density (D<inf>it</inf>), leakage current, and stress-induced leakage current (SILC) were measured. V<inf>fb</inf> shift of less than 20mV and D<inf>it</inf> less than 2×10<sup>11</sup>/cm<sup>2</sup> were observed from the low temperature soak and spike oxides. Leakage currents from fresh devices and after high current stressing (0.1A/cm<sup>2</sup>) were comparable to the reference oxide.","PeriodicalId":317927,"journal":{"name":"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors","volume":"266 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123290951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-12-02DOI: 10.1109/RTP.2008.4690555
T. Kubo, T. Sukegawa, M. Kase
This paper describes the total temperature fluctuation within patterned wafers based on sub-100μm-scaled microscopic temperature non-uniformity within a chip, and mm-scaled macroscopic temperature variation within blanket wafers in laser spike annealing (LSA) and Flash Lamp Annealing (FLA). Temperature distribution within a chip and non-uniformity within blanket wafers are obtained by thermal wave (TW) method and conventional 4 point probe sheet resistance measurement, respectively. In the case of LSA, it was found that the local temperature is less dependent on pattern density. However, hot spots which local temperature is 50 °C higher than the surrounding area occur near large active areas. In the case of FLA, the local temperature depends strongly on pattern pitch. We did not find the hot spot. Total temperature fluctuations of pattern wafers of LSA and FLA reach about 90 and 120 °C.
{"title":"Total temperature fluctuation of a patternned wafer in the millisecond annealing","authors":"T. Kubo, T. Sukegawa, M. Kase","doi":"10.1109/RTP.2008.4690555","DOIUrl":"https://doi.org/10.1109/RTP.2008.4690555","url":null,"abstract":"This paper describes the total temperature fluctuation within patterned wafers based on sub-100μm-scaled microscopic temperature non-uniformity within a chip, and mm-scaled macroscopic temperature variation within blanket wafers in laser spike annealing (LSA) and Flash Lamp Annealing (FLA). Temperature distribution within a chip and non-uniformity within blanket wafers are obtained by thermal wave (TW) method and conventional 4 point probe sheet resistance measurement, respectively. In the case of LSA, it was found that the local temperature is less dependent on pattern density. However, hot spots which local temperature is 50 °C higher than the surrounding area occur near large active areas. In the case of FLA, the local temperature depends strongly on pattern pitch. We did not find the hot spot. Total temperature fluctuations of pattern wafers of LSA and FLA reach about 90 and 120 °C.","PeriodicalId":317927,"journal":{"name":"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors","volume":"129 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122335992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-12-02DOI: 10.1109/RTP.2008.4690558
Andrea Edit Pap, P. Petrik, B. Pécz, G. Battistig, I. Bársony, Zsolt Szekrényes, K. Kamarás, Z. Schay, Z. Nényei
In our previously published paper [1, 2] we demonstrated that deuterium adsorbs on Si surface at room temperature much stronger than hydrogen [3, 4]. Moreover, in case of deuterium passivated wafers the vacuum storage can be omitted without risking the non-controlled native oxidation of silicon for up to 5 hours or more. It could be a suitable and more robust surface cleaning and passivation process for the industry, but heavy water is expensive. As a cheaper procedure, we present in this paper the results of our studies in which the Si surface is treated in vapor phase of heavy-water (D2O) + 50% HF (e.g. 20:1) mixture at 25, 40, 50 and 65 °C, for 1, 10 and 60 minutes. The surface evolution of the D-passivated surface was followed by contact angle measurements, by spectroscopic ellipsometry (SE), by atomic force microscopy (AFM), by X-ray photoelectron spectroscopy (XPS), by transmission electron microscopy (TEM) and by infrared absorption spectroscopy (IR) qualification and the results were compared to the H-passivated Si surface. It turned out that 1 min vapor phase treatment at 65 °C was enough to remove the native oxide and to passivate the Si surface without any degradation of the atomic surface flatness. Combination of D (or H) passivation with rapid thermal process (RTP) based on the thermal desorption kinetics of the adsorbed D and/or H layers on Si is a promising method for improved interface engineering and for better initial reactions in case of ultra thin dielectric layer formations.
{"title":"Si surface preparation and passivation by vapor phase of heavy water","authors":"Andrea Edit Pap, P. Petrik, B. Pécz, G. Battistig, I. Bársony, Zsolt Szekrényes, K. Kamarás, Z. Schay, Z. Nényei","doi":"10.1109/RTP.2008.4690558","DOIUrl":"https://doi.org/10.1109/RTP.2008.4690558","url":null,"abstract":"In our previously published paper [1, 2] we demonstrated that deuterium adsorbs on Si surface at room temperature much stronger than hydrogen [3, 4]. Moreover, in case of deuterium passivated wafers the vacuum storage can be omitted without risking the non-controlled native oxidation of silicon for up to 5 hours or more. It could be a suitable and more robust surface cleaning and passivation process for the industry, but heavy water is expensive. As a cheaper procedure, we present in this paper the results of our studies in which the Si surface is treated in vapor phase of heavy-water (D2O) + 50% HF (e.g. 20:1) mixture at 25, 40, 50 and 65 °C, for 1, 10 and 60 minutes. The surface evolution of the D-passivated surface was followed by contact angle measurements, by spectroscopic ellipsometry (SE), by atomic force microscopy (AFM), by X-ray photoelectron spectroscopy (XPS), by transmission electron microscopy (TEM) and by infrared absorption spectroscopy (IR) qualification and the results were compared to the H-passivated Si surface. It turned out that 1 min vapor phase treatment at 65 °C was enough to remove the native oxide and to passivate the Si surface without any degradation of the atomic surface flatness. Combination of D (or H) passivation with rapid thermal process (RTP) based on the thermal desorption kinetics of the adsorbed D and/or H layers on Si is a promising method for improved interface engineering and for better initial reactions in case of ultra thin dielectric layer formations.","PeriodicalId":317927,"journal":{"name":"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130681414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-12-02DOI: 10.1109/RTP.2008.4690551
J. Everaert, E. Rosseel, C. Ortolland, M. Aoulaiche, T. Hoffmann, T. Pavelka, E. Don
Laser annealing is an ideal activation step for ultra shallow junctions (USJ). But it can increase the density of interface traps (Dit) of the gate dielectric, resulting in degraded NBTI reliability. Therefore the influence of anneal conditions is studied with corona charge metrology. SiO2 is used as a reference gate dielectric for which recovery solutions are worked out to reduce the laser induced Dit. But, on the other hand, the recovery can cause degradation of the USJ, limiting the choice of process conditions for recovery. The reduction in Dit by spike anneal can be explained by stress relaxation in case of SiO2 and SiON. For HiK gate dielectrics the behaviour is more complex due to possible chemical interactions and crystallization. Recovery can be done by spike anneal and mulitscan laser anneal. The latter is better towards USJ properties.
{"title":"Control of laser induced interface traps with in-line corona charge metrology","authors":"J. Everaert, E. Rosseel, C. Ortolland, M. Aoulaiche, T. Hoffmann, T. Pavelka, E. Don","doi":"10.1109/RTP.2008.4690551","DOIUrl":"https://doi.org/10.1109/RTP.2008.4690551","url":null,"abstract":"Laser annealing is an ideal activation step for ultra shallow junctions (USJ). But it can increase the density of interface traps (Dit) of the gate dielectric, resulting in degraded NBTI reliability. Therefore the influence of anneal conditions is studied with corona charge metrology. SiO2 is used as a reference gate dielectric for which recovery solutions are worked out to reduce the laser induced Dit. But, on the other hand, the recovery can cause degradation of the USJ, limiting the choice of process conditions for recovery. The reduction in Dit by spike anneal can be explained by stress relaxation in case of SiO2 and SiON. For HiK gate dielectrics the behaviour is more complex due to possible chemical interactions and crystallization. Recovery can be done by spike anneal and mulitscan laser anneal. The latter is better towards USJ properties.","PeriodicalId":317927,"journal":{"name":"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132362487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-12-02DOI: 10.1109/RTP.2008.4690531
H. Nayfeh
▪ Longitudinal compressive stress in the GPa regime is required for the 45nm SOI high-performance pFET device to meet aggressive performance goals. ▪ Compressive stress liner, and eSiGe stressor enhancement was employed in order to achieve a 1.6 GPa channel stress level. ▪ Mobility enhancement of the 45nm baseline device is shown to be 4X-fold higher than relaxed-Si. Effective piezo-cofficients extracted for wide range of stress highlighting 3 stress regimes. Stress and drive current are shown to be correlated with a coefficient equal to ∼ 0.25. ▪ Low-field mobility is shown to be strongly correlated to injection velocity. High strain pFET devices with gate length down to 35nm operate at about 60% of the thermal limit. ▪ Challenge for future technology nodes- the mobility vs stress relationship for channel stress levels in the 1.6GPa regime is approaching saturation. To continue this incredible rate of performance increase (17%/year), methods of increasing the low-field mobility through increased thermal velocity is required.
{"title":"Channel strain engineering for high performance CMOS technology","authors":"H. Nayfeh","doi":"10.1109/RTP.2008.4690531","DOIUrl":"https://doi.org/10.1109/RTP.2008.4690531","url":null,"abstract":"▪ Longitudinal compressive stress in the GPa regime is required for the 45nm SOI high-performance pFET device to meet aggressive performance goals. ▪ Compressive stress liner, and eSiGe stressor enhancement was employed in order to achieve a 1.6 GPa channel stress level. ▪ Mobility enhancement of the 45nm baseline device is shown to be 4X-fold higher than relaxed-Si. Effective piezo-cofficients extracted for wide range of stress highlighting 3 stress regimes. Stress and drive current are shown to be correlated with a coefficient equal to ∼ 0.25. ▪ Low-field mobility is shown to be strongly correlated to injection velocity. High strain pFET devices with gate length down to 35nm operate at about 60% of the thermal limit. ▪ Challenge for future technology nodes- the mobility vs stress relationship for channel stress levels in the 1.6GPa regime is approaching saturation. To continue this incredible rate of performance increase (17%/year), methods of increasing the low-field mobility through increased thermal velocity is required.","PeriodicalId":317927,"journal":{"name":"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116755488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-12-02DOI: 10.1109/RTP.2008.4690530
S. T. Chang, C. Liu
•The basic strain physics behind the CMOS device is explained and future cases of technological importance to the industry are introduced. •Strain Engineering offers very large improvements in nanoscale MOSFETs and is scalable to the end of the Si CMOS roadmap. •Strain combined with new channel material such as Ge has a bright future and can enhance CMOS technology.
{"title":"Basic strain physics","authors":"S. T. Chang, C. Liu","doi":"10.1109/RTP.2008.4690530","DOIUrl":"https://doi.org/10.1109/RTP.2008.4690530","url":null,"abstract":"•The basic strain physics behind the CMOS device is explained and future cases of technological importance to the industry are introduced. •Strain Engineering offers very large improvements in nanoscale MOSFETs and is scalable to the end of the Si CMOS roadmap. •Strain combined with new channel material such as Ge has a bright future and can enhance CMOS technology.","PeriodicalId":317927,"journal":{"name":"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133385693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-12-02DOI: 10.1109/RTP.2008.4690549
H. Maynard, C. Hatem, H. Gossmann, Y. Erokhin, N. Variam, Shaoyin Chen, Yun Wang
Strain engineering has become a workhorse in increasing charge carrier mobility to boost performance for sub-45nm CMOS logic technologies. While pFET transistors with embedded Si1−xGex layers in the S/D region have been widely employed to induce compressive strain in the silicon channel, nFET transistors have mostly depended on either tensile liners or stress memorization techniques (SMT) to introduce tensile strain. Recently, there have been reports on the use of Si:C in the nFET S/D enhancing transistor performance. In this paper we discuss results from novel ion implantation schemes employed to maximize carbon incorporation and to achieve defect free, strained Si:C layers. In addition, high activation of the dopant is maintained even in the presence of relatively high carbon incorporation. Several anneal techniques including SPE anneal, spike RTP, and laser spike anneals have been used to optimize carbon incorporation, strain and activation. Results from these different anneal techniques will be compared and discussed.
{"title":"Enhancing tensile stress and source/drain activation with Si:C with innovations in ion implant and millisecond laser spike annealing","authors":"H. Maynard, C. Hatem, H. Gossmann, Y. Erokhin, N. Variam, Shaoyin Chen, Yun Wang","doi":"10.1109/RTP.2008.4690549","DOIUrl":"https://doi.org/10.1109/RTP.2008.4690549","url":null,"abstract":"Strain engineering has become a workhorse in increasing charge carrier mobility to boost performance for sub-45nm CMOS logic technologies. While pFET transistors with embedded Si1−xGex layers in the S/D region have been widely employed to induce compressive strain in the silicon channel, nFET transistors have mostly depended on either tensile liners or stress memorization techniques (SMT) to introduce tensile strain. Recently, there have been reports on the use of Si:C in the nFET S/D enhancing transistor performance. In this paper we discuss results from novel ion implantation schemes employed to maximize carbon incorporation and to achieve defect free, strained Si:C layers. In addition, high activation of the dopant is maintained even in the presence of relatively high carbon incorporation. Several anneal techniques including SPE anneal, spike RTP, and laser spike anneals have been used to optimize carbon incorporation, strain and activation. Results from these different anneal techniques will be compared and discussed.","PeriodicalId":317927,"journal":{"name":"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114436704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-12-02DOI: 10.1109/RTP.2008.4690539
P. Timans, Y. Z. Hu, Y. Lee, J. Gelpey, S. Mccoy, W. Lerch, S. Paul, D. Bolze, H. Kheyrandish, J. Reyes, S. Prussin
Advances in CMOS technology require continuous reductions in the thermal budget employed for activating ion implanted dopants. However, low thermal budget annealing approaches, such as millisecond annealing, must also remove implant damage to minimize junction leakage. This paper explores the trade-offs between dopant diffusion, electrical activation and damage annealing for ultra-shallow junctions (USJ) formed by low energy B implants into both crystalline and pre-amorphized silicon. The study also addressed how low-thermal budget annealing affects the use of strong halo-style doping from As implants. Several annealing methods were studied, with the main focus on flash-assisted RTP™ (fRTP™) at temperatures between 1250°C and 1350°C. Activation was assessed with RsL™ non-contact measurements and Hg-probe four point-probe sheet resistance measurements, as well as a continuous anodic oxidation technique for depth profiling of carrier concentrations and mobility. Residual damage was assessed by photoluminescence, thermal wave studies, optical reflectance and RsL junction leakage current measurements. fRTP effectively activates high-dose, low-energy B implants, while limiting the diffusion to a few nm of profile movement. The limited thermal budget of millisecond annealing reduces, but does not fully eliminate, implant damage from heavy ions implanted at high energy, although very high process temperatures, e.g. ∼1300°C, are more effective in this regard. Strong halo doping greatly increases the junction leakage and for future device nodes it will be important to reduce implantation damage from both USJ and halo implants. Non-invasive damage metrology can help rapid optimization of implantation and annealing conditions. Such measurements will be even more useful when quantitative models can accurately link them to doping and damage profiles.
{"title":"Optimization of diffusion, activation and damage annealing in millisecond annealing","authors":"P. Timans, Y. Z. Hu, Y. Lee, J. Gelpey, S. Mccoy, W. Lerch, S. Paul, D. Bolze, H. Kheyrandish, J. Reyes, S. Prussin","doi":"10.1109/RTP.2008.4690539","DOIUrl":"https://doi.org/10.1109/RTP.2008.4690539","url":null,"abstract":"Advances in CMOS technology require continuous reductions in the thermal budget employed for activating ion implanted dopants. However, low thermal budget annealing approaches, such as millisecond annealing, must also remove implant damage to minimize junction leakage. This paper explores the trade-offs between dopant diffusion, electrical activation and damage annealing for ultra-shallow junctions (USJ) formed by low energy B implants into both crystalline and pre-amorphized silicon. The study also addressed how low-thermal budget annealing affects the use of strong halo-style doping from As implants. Several annealing methods were studied, with the main focus on flash-assisted RTP™ (fRTP™) at temperatures between 1250°C and 1350°C. Activation was assessed with RsL™ non-contact measurements and Hg-probe four point-probe sheet resistance measurements, as well as a continuous anodic oxidation technique for depth profiling of carrier concentrations and mobility. Residual damage was assessed by photoluminescence, thermal wave studies, optical reflectance and RsL junction leakage current measurements. fRTP effectively activates high-dose, low-energy B implants, while limiting the diffusion to a few nm of profile movement. The limited thermal budget of millisecond annealing reduces, but does not fully eliminate, implant damage from heavy ions implanted at high energy, although very high process temperatures, e.g. ∼1300°C, are more effective in this regard. Strong halo doping greatly increases the junction leakage and for future device nodes it will be important to reduce implantation damage from both USJ and halo implants. Non-invasive damage metrology can help rapid optimization of implantation and annealing conditions. Such measurements will be even more useful when quantitative models can accurately link them to doping and damage profiles.","PeriodicalId":317927,"journal":{"name":"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129180367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-12-02DOI: 10.1109/RTP.2008.4690537
M. Current, J. Borland
New metrologies for process characterization of annealing for dopant activation in CMOS transistors now include 4-point probes with probe spacing on the micron scale as well as non-contact methods using optical excitation of carriers for measurements of sheet resistance, leakage currents and various indications of the effects of carrier recombination at residual defects. In addition, optical methods have been extended to characterize the effects of annealing and film growth on local strain as measured by bow, site flatness and Raman spectroscopy. These new metrologies allow characterization of anneal process variations across whole wafers to the sub-mm scale and beyond for Rapid Process Optimization.
{"title":"New metrologies for annealing of USJs and thin films","authors":"M. Current, J. Borland","doi":"10.1109/RTP.2008.4690537","DOIUrl":"https://doi.org/10.1109/RTP.2008.4690537","url":null,"abstract":"New metrologies for process characterization of annealing for dopant activation in CMOS transistors now include 4-point probes with probe spacing on the micron scale as well as non-contact methods using optical excitation of carriers for measurements of sheet resistance, leakage currents and various indications of the effects of carrier recombination at residual defects. In addition, optical methods have been extended to characterize the effects of annealing and film growth on local strain as measured by bow, site flatness and Raman spectroscopy. These new metrologies allow characterization of anneal process variations across whole wafers to the sub-mm scale and beyond for Rapid Process Optimization.","PeriodicalId":317927,"journal":{"name":"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121727561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}