Detection of short circuit faults in 3-phase converter-fed induction motors using kernel SOMs

D. N. Coelho, G. Barreto, Cláudio M. S. Medeiros
{"title":"Detection of short circuit faults in 3-phase converter-fed induction motors using kernel SOMs","authors":"D. N. Coelho, G. Barreto, Cláudio M. S. Medeiros","doi":"10.1109/WSOM.2017.8020016","DOIUrl":null,"url":null,"abstract":"In this work we report the results of a comprehensive study involving the application of kernel self-organizing maps (KSOM) for early detection of interturn short-circuit faults in a three-phase converter-fed induction motor. For this purpose, two paradigms for developing KSOM-based classifiers are evaluated on the problem of interest, namely the gradient descent based KSOM (GD-KSOM) and the energy function based KSOM (EF-KSOM). Their performances are contrasted on a real-world dataset generated by means of a laboratory scale testbed that allows the simulation of different levels of interturn short-circuits (high and low impedance) for different load conditions. Feature vectors are built from the FFT-based spectrum analysis of the stator current, a non-invasive method known as the stator current signature. The performances of the aforementioned KSOM paradigms are evaluated for different kernel functions and for different neuron labeling strategies. The obtained results are compared with those achieved by standard SOM-based classifier.","PeriodicalId":130086,"journal":{"name":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSOM.2017.8020016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this work we report the results of a comprehensive study involving the application of kernel self-organizing maps (KSOM) for early detection of interturn short-circuit faults in a three-phase converter-fed induction motor. For this purpose, two paradigms for developing KSOM-based classifiers are evaluated on the problem of interest, namely the gradient descent based KSOM (GD-KSOM) and the energy function based KSOM (EF-KSOM). Their performances are contrasted on a real-world dataset generated by means of a laboratory scale testbed that allows the simulation of different levels of interturn short-circuits (high and low impedance) for different load conditions. Feature vectors are built from the FFT-based spectrum analysis of the stator current, a non-invasive method known as the stator current signature. The performances of the aforementioned KSOM paradigms are evaluated for different kernel functions and for different neuron labeling strategies. The obtained results are compared with those achieved by standard SOM-based classifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于内核SOMs的三相变频异步电动机短路故障检测
在这项工作中,我们报告了一项综合研究的结果,该研究涉及核自组织映射(KSOM)在三相换流感应电动机匝间短路故障早期检测中的应用。为此,针对感兴趣的问题,评估了两种基于KSOM分类器的开发模式,即基于梯度下降的KSOM (GD-KSOM)和基于能量函数的KSOM (EF-KSOM)。通过实验室规模的测试平台生成的真实数据集对它们的性能进行了对比,该测试平台允许模拟不同负载条件下不同水平的匝间短路(高阻抗和低阻抗)。特征向量是从基于fft的定子电流频谱分析中构建的,这是一种称为定子电流特征的非侵入性方法。针对不同的核函数和不同的神经元标记策略,对上述KSOM范式的性能进行了评估。将得到的结果与基于som的标准分类器的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical evaluation of gradient methods for matrix learning vector quantization Fusion of deep learning architectures, multilayer feedforward networks and learning vector quantizers for deep classification learning Prototypes and matrix relevance learning in complex fourier space Imputation of reactive silica and available alumina in bauxites by self-organizing maps An evolutionary building algorithm for Deep Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1