Parallel Evolutionary Algorithms Performing Pairwise Comparisons

M. Cauwet, O. Teytaud, Shih-Yuan Chiu, Kuo-Min Lin, Shi-Jim Yen, D. St-Pierre, F. Teytaud
{"title":"Parallel Evolutionary Algorithms Performing Pairwise Comparisons","authors":"M. Cauwet, O. Teytaud, Shih-Yuan Chiu, Kuo-Min Lin, Shi-Jim Yen, D. St-Pierre, F. Teytaud","doi":"10.1145/2725494.2725499","DOIUrl":null,"url":null,"abstract":"We study mathematically and experimentally the convergence rate of differential evolution and particle swarm optimization for simple unimodal functions. Due to parallelization concerns, the focus is on lower bounds on the runtime, i.e. upper bounds on the speed-up, as a function of the population size. Two cases are particularly relevant: A population size of the same order of magnitude as the dimension and larger population sizes. We use the branching factor as a tool for proving bounds and get, as upper bounds, a linear speed-up for a population size similar to the dimension, and a logarithmic speed-up for larger population sizes. We then propose parametrizations for differential evolution and particle swarm optimization that reach these bounds.","PeriodicalId":112331,"journal":{"name":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2725494.2725499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study mathematically and experimentally the convergence rate of differential evolution and particle swarm optimization for simple unimodal functions. Due to parallelization concerns, the focus is on lower bounds on the runtime, i.e. upper bounds on the speed-up, as a function of the population size. Two cases are particularly relevant: A population size of the same order of magnitude as the dimension and larger population sizes. We use the branching factor as a tool for proving bounds and get, as upper bounds, a linear speed-up for a population size similar to the dimension, and a logarithmic speed-up for larger population sizes. We then propose parametrizations for differential evolution and particle swarm optimization that reach these bounds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行进化算法执行两两比较
本文从数学和实验两方面研究了简单单峰函数微分进化和粒子群优化的收敛速度。由于并行化的考虑,重点是运行时的下界,即加速的上界,作为人口大小的函数。有两种情况特别相关:与维度相同数量级的种群规模和更大的种群规模。我们使用分支因子作为证明边界的工具,并得到,作为上界,对于与维数相似的种群大小的线性加速,对于更大的种群大小的对数加速。然后,我们提出了达到这些界限的差分进化和粒子群优化的参数化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights From Adversarial Fitness Functions Hypomixability Elimination In Evolutionary Systems Black-box Complexity of Parallel Search with Distributed Populations Information Geometry of the Gaussian Distribution in View of Stochastic Optimization Fixed Budget Performance of the (1+1) EA on Linear Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1