Teng Wang, K. Vasko, Zhuo Liu, Hui Chen, Weikuan Yu
{"title":"BPAR: A Bundle-Based Parallel Aggregation Framework for Decoupled I/O Execution","authors":"Teng Wang, K. Vasko, Zhuo Liu, Hui Chen, Weikuan Yu","doi":"10.1109/DISCS.2014.6","DOIUrl":null,"url":null,"abstract":"In today's \"Big Data\" era, developers have adopted I/O techniques such as MPI-IO, Parallel NetCDF and HDF5 to garner enough performance to manage the vast amount of data that scientific applications require. These I/O techniques offer parallel access to shared datasets and together with a set of optimizations such as data sieving and two-phase I/O to boost I/O throughput. While most of these techniques focus on optimizing the access pattern on a single file or file extent, few of these techniques consider cross-file I/O optimizations. This paper aims to explore the potential benefit from cross-file I/O aggregation. We propose a Bundle-based PARallel Aggregation framework (BPAR) and design three partitioning schemes under such framework that targets at improving the I/O performance of a mission-critical application GEOS-5, as well as a broad range of other scientific applications. The results of our experiments reveal that BPAR can achieve on average 2.1× performance improvement over the baseline GEOS-5.","PeriodicalId":278119,"journal":{"name":"2014 International Workshop on Data Intensive Scalable Computing Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Data Intensive Scalable Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DISCS.2014.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In today's "Big Data" era, developers have adopted I/O techniques such as MPI-IO, Parallel NetCDF and HDF5 to garner enough performance to manage the vast amount of data that scientific applications require. These I/O techniques offer parallel access to shared datasets and together with a set of optimizations such as data sieving and two-phase I/O to boost I/O throughput. While most of these techniques focus on optimizing the access pattern on a single file or file extent, few of these techniques consider cross-file I/O optimizations. This paper aims to explore the potential benefit from cross-file I/O aggregation. We propose a Bundle-based PARallel Aggregation framework (BPAR) and design three partitioning schemes under such framework that targets at improving the I/O performance of a mission-critical application GEOS-5, as well as a broad range of other scientific applications. The results of our experiments reveal that BPAR can achieve on average 2.1× performance improvement over the baseline GEOS-5.